Background: Spatial repellents that create airborne concentrations of an active ingredient (AI) within a space offer a scalable solution to further reduce transmission of malaria, by disrupting mosquito behaviours in ways that ultimately lead to reduced human-vector contact. Passive emanator spatial repellents can protect multiple people within the treated space and can last for multiple weeks without the need for daily user touchpoints, making them less intrusive interventions. They may be particularly advantageous in certain use cases where implementation of core tools may be constrained, such as in humanitarian emergencies and among mobile at-risk populations.
View Article and Find Full Text PDFBackground: Methods for evaluating efficacy of core malaria interventions in experimental and operational settings are well established but gaps exist for spatial repellents (SR). The objective of this study was to compare three different techniques: (1) collection of blood-fed mosquitoes (feeding), (2) human landing catch (HLC), and (3) CDC light trap (CDC-LT) collections for measuring the indoor protective efficacy (PE) of the volatile pyrethroid SR product Mosquito Shield METHODS: The PE of Mosquito Shield against a wild population of pyrethroid-resistant Anopheles arabiensis mosquitoes was determined via feeding, HLC, or CDC-LT using four simultaneous 3 by 3 Latin squares (LS) run using 12 experimental huts in Tanzania. On any given night each technique was assigned to two huts with control and two huts with treatment.
View Article and Find Full Text PDFThermal tolerance greatly influences the geographic distribution, seasonality, and feeding habits of mosquitoes; this study aimed to examine the impacts of species, sex, and diet on thermal tolerance in mosquitoes. We found that Culex quinquefasciatus was inherently significantly more cold tolerant than Aedes aegypti, while Ae. aegypti had improved heat tolerance compared to Cx.
View Article and Find Full Text PDFInsecticide application for vector control is the most controversial component of a public health program due to concerns about environmental and human health safety. One approach to overcome this challenge is the use of environmentally benign active ingredients. Among the most promising emerging strategies are attractive toxic sugar baits.
View Article and Find Full Text PDFBackground: A frequent goal of pest management strategies targeting social insects is total colony elimination. Insecticidal baits are highly effective at controlling social insect pests, although their ability to provide total colony elimination has only been well studied in a few species. Genetically testing colony elimination in many urban pest ants can be challenging due to indistinct colony boundaries observed in unicolonial, invasive species; however, some pest ants, such as the dark rover ant (Brachymyrmex patagonicus), maintain strict colony borders through aggression towards non-nestmates.
View Article and Find Full Text PDFThe ecological success of ants has made them abundant in most environments, yet inter- and intraspecific competition usually limit nest density for a given population. Most invasive ant populations circumvent this limitation through a supercolonial structure, eliminating intraspecific competition through a loss of nestmate recognition and lack of aggression toward non-nestmates. Native to South America, has recently invaded many locations worldwide, with invasive populations described as extremely large and dense.
View Article and Find Full Text PDFWe investigated the use of termite baiting, a proven system of targeted colony elimination, in an overall area-wide control strategy against subterranean termites. At two field sites, we used microsatellite markers to estimate the total number of colonies, their spatial partitioning, and breeding structure. Termite pressure was recorded for two years before and after the introduction of Trelona (active ingredient novaluron) to a large area of one of the sites.
View Article and Find Full Text PDF