Publications by authors named "Madelaine Daianu"

Brain aging is a multifaceted process that remains poorly understood. Despite significant advances in technology, progress toward identifying reliable risk factors for suboptimal brain health requires realistically complex analytic methods to explain relationships between genetics, biology, and environment. Here we show the utility of a novel unsupervised machine learning technique - Correlation Explanation (CorEx) - to discover how individual measures from structural brain imaging, genetics, plasma, and CSF markers can jointly provide information on risk for Alzheimer's disease (AD).

View Article and Find Full Text PDF

Diffuse white-matter disease associated with small-vessel disease and dementia is prevalent in the elderly. The biological mechanisms, however, remain elusive. Using pericyte-deficient mice, magnetic resonance imaging, viral-based tract-tracing, and behavior and tissue analysis, we found that pericyte degeneration disrupted white-matter microcirculation, resulting in an accumulation of toxic blood-derived fibrin(ogen) deposits and blood-flow reductions, which triggered a loss of myelin, axons and oligodendrocytes.

View Article and Find Full Text PDF

Impaired attribution of animacy (state of living or being sentient) and of agency (capability of intrinsically-driven action) may underlie social behavior disturbances in behavioral variant frontotemporal dementia (bvFTD). We presented the Heider and Simmel film of moving geometric shapes to 11 bvFTD patients, 11 Alzheimer's disease (AD) patients, and 12 healthy controls (HCs) and rated their recorded verbal responses for animacy attribution and agency attribution. All participants had skin conductance (SC) continuously recorded while viewing the film, and all dementia participants underwent magnetic resonance imaging (MRI) for regions of interest.

View Article and Find Full Text PDF

Link prediction is a promising research area for modeling various types of networks and has mainly focused on predicting missing links. Link prediction methods may be valuable for describing brain connectivity, as it changes in Alzheimer's disease (AD) and its precursor, mild cognitive impairment (MCI). Here, we analyzed 3-tesla whole-brain diffusion-weighted images from 202 participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) - 50 healthy controls, 72 with earlyMCI (eMCI) and 38 with lateMCI (lMCI) and 42 AD patients.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive decline in memory and other aspects of cognitive function. Diffusion-weighted imaging (DWI) offers a non-invasive approach to delineate the effects of AD on white matter (WM) integrity. Previous studies calculated either some summary statistics over regions of interest (ROI analysis) or some statistics along mean skeleton lines (Tract Based Spatial Statistic [TBSS]), so they cannot quantify subtle local WM alterations along major tracts.

View Article and Find Full Text PDF

Visually comparing human brain networks from multiple population groups serves as an important task in the field of brain connectomics. The commonly used brain network representation, consisting of nodes and edges, may not be able to reveal the most compelling network differences when the reconstructed networks are dense and homogeneous. In this paper, we leveraged the block information on the Region Of Interest (ROI) based brain networks and studied the problem of blockwise brain network visual comparison.

View Article and Find Full Text PDF

Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease.

View Article and Find Full Text PDF

In network analysis, the so-called "rich club" describes the core areas of the brain that are more densely interconnected among themselves than expected by chance, and has been identified as a fundamental aspect of the human brain connectome. This is the first in-depth diffusion imaging study to investigate the rich club along with other organizational changes in the brain's anatomical network in behavioral frontotemporal dementia (bvFTD), and a matched cohort with early-onset Alzheimer's disease (EOAD). Our study sheds light on how bvFTD and EOAD affect connectivity of white matter fiber pathways in the brain, revealing differences and commonalities in the connectome among the dementias.

View Article and Find Full Text PDF

Background: Resting sympathetic tone, a measure of physiological arousal, is decreased in patients with apathy and inertia, such as those with behavioral variant frontotemporal dementia (bvFTD) and other frontally-predominant disorders.

Objective: To identify the neuroanatomical correlates of skin conductance levels (SCLs), an index of resting sympathetic tone and apathy, among patients with bvFTD, where SCLs is decreased, compared to those with Alzheimer's disease (AD), where it is not.

Methods: This study analyzed bvFTD (n = 14) patients and a comparison group with early-onset AD (n = 19).

View Article and Find Full Text PDF

Cortical and subcortical nuclei degenerate in the dementias, but less is known about changes in the white matter tracts that connect them. To better understand white matter changes in behavioral variant frontotemporal dementia (bvFTD) and early-onset Alzheimer's disease (EOAD), we used a novel approach to extract full 3D profiles of fiber bundles from diffusion-weighted MRI (DWI) and map white matter abnormalities onto detailed models of each pathway. The result is a spatially complex picture of tract-by-tract microstructural changes.

View Article and Find Full Text PDF

Behavioral changes in dementia, especially behavioral variant frontotemporal dementia (bvFTD), may result in alterations in moral reasoning. Investigators have not clarified whether these alterations reflect differential impairment of care-based vs. rule-based moral behavior.

View Article and Find Full Text PDF

Genetic and environmental factors affect white matter connectivity in the normal brain, and they also influence diseases in which brain connectivity is altered. Little is known about genetic influences on brain connectivity, despite wide variations in the brain's neural pathways. Here we applied the "DICCCOL" framework to analyze structural connectivity, in 261 twin pairs (522 participants, mean age: 21.

View Article and Find Full Text PDF

Our understanding of network breakdown in Alzheimer's disease (AD) is likely to be enhanced through advanced mathematical descriptors. Here, we applied spectral graph theory to provide novel metrics of structural connectivity based on 3-Tesla diffusion weighted images in 42 AD patients and 50 healthy controls. We reconstructed connectivity networks using whole-brain tractography and examined, for the first time here, cortical disconnection based on the graph energy and spectrum.

View Article and Find Full Text PDF

Diffusion imaging can assess the white matter connections within the brain, revealing how neural pathways break down in Alzheimer's disease (AD). We analyzed 3-Tesla whole-brain diffusion-weighted images from 202 participants scanned by the Alzheimer's Disease Neuroimaging Initiative-50 healthy controls, 110 with mild cognitive impairment (MCI) and 42 AD patients. From whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions.

View Article and Find Full Text PDF

Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. High angular resolution diffusion imaging (HARDI) samples diffusivity at a large number of spherical angles, to better resolve neural fibers that mix or cross. Here, we implemented a framework for advanced mathematical analysis of mouse 5-shell HARDI (=1000, 3000, 4000, 8000, 12000 s/mm), also known as hybrid diffusion imaging (HYDI).

View Article and Find Full Text PDF

Diffusion imaging and brain connectivity analyses can assess white matter deterioration in the brain, revealing the underlying patterns of how brain structure declines. Fiber tractography methods can infer neural pathways and connectivity patterns, yielding sensitive mathematical metrics of network integrity. Here, we analyzed 1.

View Article and Find Full Text PDF

Measures of network topology and connectivity aid the understanding of network breakdown as the brain degenerates in Alzheimer's disease (AD). We analyzed 3-Tesla diffusion-weighted images from 202 patients scanned by the Alzheimer's Disease Neuroimaging Initiative - 50 healthy controls, 72 with early- and 38 with late-stage mild cognitive impairment (eMCI/lMCI) and 42 with AD. Using whole-brain tractography, we reconstructed structural connectivity networks representing connections between pairs of cortical regions.

View Article and Find Full Text PDF

Diffusion imaging and brain connectivity analyses can reveal the underlying organizational patterns of the human brain, described as complex networks of densely interlinked regions. Here, we analyzed 1.5-Tesla whole-brain diffusion-weighted images from 64 participants - 15 patients with behavioral variant frontotemporal (bvFTD) dementia, 19 with early-onset Alzheimer's disease (EOAD), and 30 healthy elderly controls.

View Article and Find Full Text PDF

Neuroimaging offers a powerful means to assess the trajectory of brain degeneration in a variety of disorders, including Alzheimer's disease (AD). Here we describe how multi-modal imaging can be used to study the changing brain during the different stages of AD. We integrate findings from a range of studies using magnetic resonance imaging (MRI), positron emission tomography (PET), functional MRI (fMRI) and diffusion weighted imaging (DWI).

View Article and Find Full Text PDF

Brain connectivity analyses show considerable promise for understanding how our neural pathways gradually break down in aging and Alzheimer's disease (AD). Even so, we know very little about how the brain's networks change in AD, and which metrics are best to evaluate these changes. To better understand how AD affects brain connectivity, we analyzed anatomical connectivity based on 3-T diffusion-weighted images from 111 subjects (15 with AD, 68 with mild cognitive impairment, and 28 healthy elderly; mean age, 73.

View Article and Find Full Text PDF

Diffusion imaging and brain connectivity analyses can monitor white matter deterioration, revealing how neural pathways break down in aging and Alzheimer's disease (AD). Here we tested how AD disrupts the 'rich club' effect - a network property found in the normal brain - where high-degree nodes in the connectivity network are more heavily interconnected with each other than expected by chance. We analyzed 3-Tesla whole-brain diffusionweighted images (DWI) from 66 subjects (22 AD/44 normal elderly).

View Article and Find Full Text PDF

Diffusion imaging can map anatomical connectivity in the living brain, offering new insights into fundamental questions such as how the left and right brain hemispheres differ. Anatomical brain asymmetries are related to speech and language abilities, but less is known about left/right hemisphere differences in brain wiring. To assess this, we scanned 457 young adults (age 23.

View Article and Find Full Text PDF