Publications by authors named "Madeja Z"

Background: Multi-drug resistance of poly(morpho)nuclear giant cells (PGCs) determines their cytoprotective and generative potential in cancer ecosystems. However, mechanisms underlying the involvement of PGCs in glioblastoma multiforme (GBM) adaptation to chemotherapeutic regimes remain largely obscure. In particular, metabolic reprogramming of PGCs has not yet been considered in terms of GBM recovery from doxorubicin (DOX)-induced stress.

View Article and Find Full Text PDF

Endogenous electric fields (EFs) serve as a crucial signal to guide cell movement in processes such as wound healing, embryonic development, and cancer metastasis. However, the mechanism underlying cell electrotaxis remains poorly understood. A plausible hypothesis suggests that electrophoretic or electroosmotic forces may rearrange charged components of the cell membrane, including receptors for chemoattractants which induce asymmetric signaling and directional motility.

View Article and Find Full Text PDF

Background: Stem cell-derived extracellular vesicles (EVs) are an emerging class of therapeutics with excellent biocompatibility, bioactivity and pro-regenerative capacity. One of the potential targets for EV-based medicines are cardiovascular diseases (CVD). In this work we used EVs derived from human induced pluripotent stem cells (hiPSCs; hiPS-EVs) cultured under different oxygen concentrations (21, 5 and 3% O) to dissect the molecular mechanisms responsible for cardioprotection.

View Article and Find Full Text PDF

Emerging evidence suggests that stem cell-derived extracellular vesicles (EVs) may induce pro-regenerative effects in ischemic tissues by delivering bioactive molecules, including microRNAs. Recent studies have also shown pro-regenerative benefits of EVs derived from induced pluripotent stem (iPS) cells. However, the underlying mechanisms of EV benefits and the role of their transferred regulatory molecules remain incompletely understood.

View Article and Find Full Text PDF

The molecular mechanisms behind electrotaxis remain largely unknown, with no identified primary direct current electric field (dcEF) sensor. Two leading hypotheses propose mechanisms involving the redistribution of charged components in the cell membrane (driven by electrophoresis or electroosmosis) and the asymmetric activation of ion channels. To investigate these mechanisms, we studied the dynamics of electrotactic behaviour of mouse 3T3 fibroblasts.

View Article and Find Full Text PDF

Background: Cardiac fibrosis is one of the top killers among fibrotic diseases and continues to be a global unaddressed health problem. The lack of effective treatment combined with the considerable socioeconomic burden highlights the urgent need for innovative therapeutic options. Here, we evaluated the anti-fibrotic properties of extracellular vesicles (EVs) derived from human induced pluripotent stem cells (hiPSCs) that were cultured under various oxygen concentrations.

View Article and Find Full Text PDF

Rationale: Emerging evidence indicates that stem cell (SC)- derived extracellular vesicles (EVs) carrying bioactive miRNAs are able to repair damaged or infarcted myocardium and ameliorate adverse remodeling. Fibroblasts represent a major cell population responsible for scar formation in the damaged heart. However, the effects of EVs on cardiac fibroblast (CFs) biology and function has not been investigated.

View Article and Find Full Text PDF

Accumulating evidence suggests that an important role is played by electric signals in modifying cell behaviour during developmental, regenerative and pathological processes. However, their role in asthma has not yet been addressed. Bronchial fibroblasts have recently been identified having important roles in asthma development.

View Article and Find Full Text PDF

Graphenic materials attract huge attention because of their outstanding properties, and have a wide range of applications as, , components of biomaterials. Due to their hydrophobic nature, however, the surfaces need to be functionalized to improve wettability and biocompatibility. In this study, we investigate the functionalization of graphenic surfaces by oxygen plasma treatment, introducing surface functional groups in a controlled way.

View Article and Find Full Text PDF

The airway wall remodeling observed in asthma is associated with subepithelial fibrosis and enhanced activation of human bronchial fibroblasts (HBFs) in the fibroblast to myofibroblast transition (FMT), induced mainly by transforming growth factor-β (TGF-β). The relationships between asthma severity, obesity, and hyperlipidemia suggest the involvement of peroxisome proliferator-activated receptors (PPARs) in the remodeling of asthmatic bronchi. In this study, we investigated the effect of PPARδ ligands (GW501516 as an agonist, and GSK0660 as an antagonist) on the FMT potential of HBFs derived from asthmatic patients cultured in vitro.

View Article and Find Full Text PDF

Background: Metformin is an inhibitor of oxidative phosphorylation that displays an array of anticancer activities. The interference of metformin with the activity of multi-drug resistance systems in cancer cells has been reported. However, the consequences of the acquired chemoresistance for the adaptative responses of cancer cells to metformin-induced stress and for their phenotypic evolution remain unaddressed.

View Article and Find Full Text PDF

Fenofibrate is a widely used anti-hyperlipidemic agonist of peroxisome proliferator-activated receptor alpha (PPARα). As a metabolic blocker, fenofibrate interferes with cancer promotion/progression via its misbalancing effects on cellular metabolism. However, the consequences of its long-term application for patients with diagnosed drug-resistant cancers are unknown.

View Article and Find Full Text PDF

Background: Fontan surgery with cardiopulmonary bypass (CPB) causes tremendous systemic stress and inflammatory responses, affecting postoperative organ function, morbidity, and mortality. Although this reaction triggers partially protective anti-inflammatory responses, it is harmful in patients with single ventricle congenital heart defects. Despite decades of research, an effective anti-inflammatory and stress defense strategy is lacking.

View Article and Find Full Text PDF

A global increase in the populations of drug resistant bacteria exerts negative effects on animal production and human health. Our study has been focused on the assessment of resistance determinants in relation to phenotypic resistance of the 74 commensal E. coli isolates present in different ecological environments.

View Article and Find Full Text PDF

Obtaining stable embryonic stem cells (ESC) from animals and humans opens up a wide spectrum of opportunities for science and regenerative medicine. The basic procedures necessary to obtain ESC are universal for all mammalian species. The challenge is to maintain species specific conditions required to support pluripotency characteristic for the pre-implantation embryo.

View Article and Find Full Text PDF

Subepithelial fibrosis is a component of the remodeling observed in the bronchial wall of patients diagnosed with asthma. In this process, human bronchial fibroblasts (HBFs) drive the fibroblast-to-myofibroblast transition (FMT) in response to transforming growth factor-β (TGF-β), which activates the canonical Smad-dependent signaling. However, the pleiotropic properties of TGF-β also promote the activation of non-canonical signaling pathways which can affect the FMT.

View Article and Find Full Text PDF

Adipose tissue (AT) represents a commonly used source of mesenchymal stem/stromal cells (MSCs) whose proregenerative potential has been widely investigated in multiple clinical trials worldwide. However, the standardization of the manufacturing process of MSC-based cell therapy medicinal products in compliance with the requirements of the local authorities is obligatory and will allow us to obtain the necessary permits for product administration according to its intended use. Within the research phase (RD), we optimized the protocols used for the processing and ex vivo expansion of AT-derived MSCs (AT-MSCs) for the development of an Advanced Therapy Medicinal Product (ATMP) for use in humans.

View Article and Find Full Text PDF

Standard sperm evaluation parameters do not enable predicting their ability to survive cryopreservation. Mitochondria are highly prone to suffer injuries during freezing, and any abnormalities in their morphology or function are reflected by a decline of sperm quality. Our work focused on describing a link between the number and the activity of mitochondria, with an aim to validate its applicability as a biomarker of bovine sperm quality.

View Article and Find Full Text PDF
Article Synopsis
  • Doxorubicin (DOX) is a common cancer treatment, but its use is hindered by heart damage it can cause over time, leading to heart failure.
  • Researchers found that cinnamic acid (CA) derivatives can protect heart cells from this cardiotoxicity by reducing oxidative stress and lowering levels of specific proteins that trigger cell death.
  • These CA derivatives not only help maintain the health and movement of heart cells but also show promise for developing new treatments to protect patients receiving DOX.
View Article and Find Full Text PDF

Cord blood (CB) represents a source of hematopoietic stem and progenitor cells (CB-HSPCs) for bone marrow (BM) reconstitution, but clinical CB application is limited in adult patients due to the insufficient number of CB-HSCPCs and the lack of effective ex vivo approaches to increase CB-HSPC functionality. Since human-induced pluripotent stem cells (hiPSCs) have been indicated as donor cells for bioactive extracellular vesicles (EVs) modulating properties of other cells, we are the first to employ hiPSC-derived EVs (hiPSC-EVs) to enhance the hematopoietic potential of CB-derived CD45LinCD34 cell fraction enriched in CB-HSPCs. We demonstrated that hiPSC-EVs improved functional properties of CB-HSPCs critical for their hematopoietic capacity including metabolic, hematopoietic and clonogenic potential as well as survival, chemotactic response to stromal cell-derived factor 1 and adhesion to the model components of hematopoietic niche in vitro.

View Article and Find Full Text PDF

Glucose or fatty acids (FAs) metabolisms may alter the ovarian follicle environment and thus determine oocyte and the nascent embryo quality. The aim of the experiment was to investigate the effect of selective inhibition of glucose (iodoacetate + DHEA) or FA (etomoxir) metabolism on in vitro maturation (IVM) of bovine COCs (cumulus-oocyte complexes) to investigate oocyte's development, quality, and energy metabolism. After in vitro fertilization, embryos were cultured to the blastocyst stage.

View Article and Find Full Text PDF

This paper presents two water-soluble fullerene nanomaterials (HexakisaminoC and monoglucosamineC, which is called here JK39) that were developed and synthesized as non-viral siRNA transfection nanosystems. The developed two-step Bingel-Hirsch reaction enables the chemical modification of the fullerene scaffold with the desired bioactive fragments such as D-glucosamine while keeping the crucial positive charged ethylenediamine based malonate. The ESI-MS and C-NMR analyses of JK39 confirmed its high T symmetry, while X-ray photoelectron spectroscopy revealed the presence of nitrogen and oxygen-containing C-O or C-N bonds.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) recurrences after temozolomide (TMZ) treatment result from the expansion of drug-resistant and potentially invasive GBM cells. This process is facilitated by O6-Methylguanine-DNA Methyltransferase (MGMT), which counteracts alkylating TMZ activity. We traced the expansion of invasive cell lineages under persistent chemotherapeutic stress in MGMT (U87) and MGMT (T98G) GBM populations to look into the mechanisms of TMZ-induced microevolution of GBM invasiveness.

View Article and Find Full Text PDF