Hypertension and diabetes induce vascular injury through processes that are not fully understood. Changes in extracellular vesicle (EV) composition could provide novel insights. Here, we examined the protein composition of circulating EVs from hypertensive, diabetic and healthy mice.
View Article and Find Full Text PDFTubulointerstitial fibrosis is a hallmark of advanced diabetic kidney disease that is linked to a decline in renal function, however the pathogenic mechanisms are poorly understood. Microparticles (MPs) are 100-1000 nm vesicles shed from injured cells that are implicated in intercellular signalling. Our lab recently observed the formation of MPs from podocytes and their release into urine of animal models of type 1 and 2 diabetes and in humans with type 1 diabetes.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is caused by homozygous mutation of the survival motor neuron 1 (SMN1) gene. Disease severity inversely correlates to the amount of SMN protein produced from the homologous SMN2 gene. We show that SMN protein is naturally released in exosomes from all cell types examined.
View Article and Find Full Text PDFAims/hypothesis: Individuals with diabetes exhibit increases in circulating endothelial microparticles (eMPs, also referred to as endothelial microvesicles), which are associated with endothelial dysfunction and a heightened risk of cardiovascular complications. We have shown that eMPs are markers and mediators of vascular injury although their role in diabetes is unclear. We hypothesised that the composition and biological activity of eMPs are altered in response to high glucose exposure.
View Article and Find Full Text PDFEndothelial microparticles are effectors of endothelial damage; however mechanisms involved are unclear. We examined the effects of eMPs on cultured endothelial cells (ECs) and isolated vessels and investigated the role of eMP-derived reactive oxygen species (ROS) and redox signaling in these processes. eMPs were isolated from EC media and their ability to directly produce ROS was assessed by lucigenin and liquid chromatography.
View Article and Find Full Text PDF