In Parkinson's disease, synucleinopathy is hypothesized to spread from the enteric nervous system, via the vagus nerve, to the CNS. Here, we compare, in baboon monkeys, the pathological consequences of either intrastriatal or enteric injection of α-synuclein-containing Lewy body extracts from patients with Parkinson's disease. This study shows that patient-derived α-synuclein aggregates are able to induce nigrostriatal lesions and enteric nervous system pathology after either enteric or striatal injection in a non-human primate model.
View Article and Find Full Text PDFTau is normally a highly soluble phosphoprotein found predominantly in neurons. Six different isoforms of tau are expressed in the adult human CNS. Under pathological conditions, phosphorylated tau aggregates are a defining feature of neurodegenerative disorders called tauopathies.
View Article and Find Full Text PDFBackground: The presence of Lewy bodies and Lewy neurites (LN) has been demonstrated in the enteric nervous system (ENS) of Parkinson's disease (PD) patients. The aims of the present research were to use routine colonoscopy biopsies (1) to analyze, in depth, enteric pathology throughout the colonic submucosal plexus (SMP), and (2) to correlate the pathological burden with neurological and gastrointestinal (GI) symptoms.
Methodology/principal Findings: A total of 10 control and 29 PD patients divided into 3 groups according to disease duration were included.
Accumulated evidence emphasizes the importance of α-synuclein expression levels in Parkinson's disease (PD) pathogenesis. PD is a multicentric disorder that affects the enteric nervous system (ENS), whose involvement may herald the degenerative process in the CNS. We therefore undertook the present study to investigate the mechanisms involved in the regulation of expression of α-synuclein in the ENS.
View Article and Find Full Text PDFBiomarkers for Parkinson's disease (PD) are mainly intended for the early diagnosis of the disease and to monitor its progression, two aspects insufficiently covered by clinical evaluation. In the last 20 years, the search for biomarkers has been supported by technological advances in the fields of molecular genetics and neuroimaging. Nevertheless, no fully validated biomarker is yet available, and there is still a need for biomarkers that will complement those already available.
View Article and Find Full Text PDF