Publications by authors named "Maddalena Balia"

The dentate gyrus (DG) of the hippocampus is a mosaic of dentate granule neurons (DGNs) accumulated throughout life. While many studies focused on the morpho-functional properties of adult-born DGNs, much less is known about DGNs generated during development, and in particular those born during embryogenesis. One of the main reasons for this gap is the lack of methods available to specifically label and manipulate embryonically-born DGNs.

View Article and Find Full Text PDF

Background: Oligodendrocyte lineage cells interact with the vasculature in the gray matter. Physical and functional interactions between blood vessels and oligodendrocyte precursor cells play an essential role in both the developing and adult brain. Oligodendrocyte precursor cells have been shown to migrate along the vasculature and subsequently detach from it during their differentiation to oligodendrocytes.

View Article and Find Full Text PDF

Myelination of projection neurons by oligodendrocytes is key to optimize action potential conduction over long distances. However, a large fraction of myelin enwraps the axons of parvalbumin-positive fast-spiking interneurons (FSI), exclusively involved in local cortical circuits. Whether FSI myelination contributes to the fine-tuning of intracortical networks is unknown.

View Article and Find Full Text PDF

How neuronal connections are established and organized into functional networks determines brain function. In the mammalian cerebral cortex, different classes of GABAergic interneurons exhibit specific connectivity patterns that underlie their ability to shape temporal dynamics and information processing. Much progress has been made toward parsing interneuron diversity, yet the molecular mechanisms by which interneuron-specific connectivity motifs emerge remain unclear.

View Article and Find Full Text PDF

In the brain, neurons establish bona fide synapses onto oligodendrocyte precursor cells (OPCs), but the function of these neuron-glia synapses remains unresolved. A leading hypothesis suggests that these synapses regulate OPC proliferation and differentiation. However, a causal link between synaptic activity and OPC cellular dynamics is still missing.

View Article and Find Full Text PDF

NG2 cells, oligodendrocyte progenitors, receive a major synaptic input from interneurons in the developing neocortex. It is presumed that these precursors integrate cortical networks where they act as sensors of neuronal activity. We show that NG2 cells of the developing somatosensory cortex form a transient and structured synaptic network with interneurons that follows its own rules of connectivity.

View Article and Find Full Text PDF

NG2 cells, a main pool of glial progenitors, express γ-aminobutyric acid A (GABA(A)) receptors (GABA(A)Rs), the functional and molecular properties of which are largely unknown. We recently reported that transmission between GABAergic interneurons and NG2 cells drastically changes during development of the somatosensory cortex, switching from synaptic to extrasynaptic communication. Since synaptic and extrasynaptic GABA(A)Rs of neurons differ in their subunit composition, we hypothesize that GABA(A)Rs of NG2 cells undergo molecular changes during cortical development accompanying the switch of transmission modes.

View Article and Find Full Text PDF