PICK1 is a modular scaffold implicated in synaptic receptor trafficking. It features a PDZ domain, a BAR domain, and an acidic C-terminal tail (ACT). Analysis by small- angle x-ray scattering suggests a structural model that places the receptor-binding site of the PDZ domain and membrane-binding surfaces of the BAR and PDZ domains adjacent to each other on the concave side of the banana-shaped PICK1 dimer.
View Article and Find Full Text PDFProteins that cap the ends of the actin filament are essential regulators of cytoskeleton dynamics. Whereas several proteins cap the rapidly growing barbed end, tropomodulin (Tmod) is the only protein known to cap the slowly growing pointed end. The lack of structural information severely limits our understanding of Tmod's capping mechanism.
View Article and Find Full Text PDFThe Rho family GTPase effector IRSp53 has essential roles in filopodia formation and neuronal development, but its regulatory mechanism is poorly understood. IRSp53 contains a membrane-binding BAR domain followed by an unconventional CRIB motif that overlaps with a proline-rich region (CRIB-PR) and an SH3 domain that recruits actin cytoskeleton effectors. Using a fluorescence reporter assay, we show that human IRSp53 adopts a closed inactive conformation that opens synergistically with the binding of human Cdc42 to the CRIB-PR and effector proteins, such as the tumor-promoting factor Eps8, to the SH3 domain.
View Article and Find Full Text PDFSca2 (surface cell antigen 2) is the only bacterial protein known to promote both actin filament nucleation and profilin-dependent elongation, mimicking eukaryotic formins to assemble actin comet tails for Rickettsia motility. We show that Sca2's functional mimicry of formins is achieved through a unique mechanism. Unlike formins, Sca2 is monomeric, but has N- and C-terminal repeat domains (NRD and CRD) that interact with each other for processive barbed-end elongation.
View Article and Find Full Text PDFS4 is an integral protein of the smaller subunit of cytosolic ribosome. In prokaryotes, it regulates the synthesis of ribosomal proteins by feedback inhibition of the α-operon gene expression, and it facilitates ribosomal RNA synthesis by direct binding to RNA polymerase. However, functional roles of S4 in eukaryotes are poorly understood, although its deficiency in humans is thought to produce Turner syndrome.
View Article and Find Full Text PDFBackground: Ribosomal proteins often carry out extraribosomal functions. The protein S4 from the smaller subunit of Escherichia coli, for instance, regulates self synthesis and acts as a transcription factor. In humans, S4 might be involved in Turner syndrome.
View Article and Find Full Text PDFS4 is a paradigm of ribosomal proteins involved in multifarious activities both within and outside the ribosome. For a detailed biochemical and structural investigations of eukaryotic S4, the wheat S4 gene has been cloned and expressed in Escherichia coli, and the protein purified to a high degree of homogeneity. The 285-residue recombinant protein containing an N-terminal His(6) tag along with fourteen additional residues derived from the cloning vector is characterized by a molecular mass of 31981.
View Article and Find Full Text PDFThe apoptotic protease activating factor (Apaf-1) is central to the regulatory mechanism by which procaspase-9 is activated in the cytochrome c-mediated pathway of apoptosis. For a detailed biochemical and structural investigation of Apaf-1 function, we have cloned and expressed in Escherichia coli inclusion bodies the WD40-deleted protein (DeltaWD40 Apaf-1) from HepG2 cell. The construct contains an N-terminal His6 tag derived from the cloning vector so that the mass of the protein and the tag together is 51,594 Da, as determined by TOF/TOF mass spectrometric analysis.
View Article and Find Full Text PDF