Through a facile two-step synthetic procedure, three metal-free organic dyes having D-π-A kind of structure, belonging to chalcone family have been designed, produced and anchored on one dimensional cadmium sulfide nanowires (1D CdS NWs) to serve as a light energy harvester through dye-sensitized solar cells (DSSC) assembly. In order to anchor dye on CdS NWs nano-network, solution chemistry has been used in an easy and effective manner. The sensitizing capability of synthesized materials has been evaluated using optical and electrochemical studies, density functional theory (DFT) simulations, and photovoltaic performances.
View Article and Find Full Text PDFStereotypic neural networks are repeatedly activated in drug-refractory epilepsies (DRE), reinforcing the expression of certain psycho-affective traits. Geschwind syndrome (GS) can serve as a model for such phenomena among patients with temporal lobe DRE. We describe stereo-electroencephalogram (SEEG) exploration in a 34-year-old male with DRE and GS, and his treatment by SEEG-radiofrequency (SEEG-RF) ablation.
View Article and Find Full Text PDFSince 2019, the infection of SARS-CoV-2 has been spreading worldwide and caused potentially lethal health problems. In view of this, the present study explores the most commodious and environmentally benign synthetic protocol for the synthesis of tetrahydrobenzo[]pyran and pyrano[2,3-]pyrimidinones as SARS-CoV-2 inhibitors via three-component cycloaddition of aromatic aldehyde, malononitrile, and dimedone/barbituric acid in water. Lemon peel from juice factory waste, namely, lemon (), sweet lemon (), and Kaffir lime or Citron (), effectually utilized to obtain WELPSA, WESLPSA, and WEKLPSA, respectively, for the synthesis of title compounds.
View Article and Find Full Text PDFAnthracobunidae is an Eocene family of large mammals from south Asia that is commonly considered to be part of the radiation that gave rise to elephants (proboscideans) and sea cows (sirenians). We describe a new collection of anthracobunid fossils from Middle Eocene rocks of Indo-Pakistan that more than doubles the number of known anthracobunid fossils and challenges their putative relationships, instead implying that they are stem perissodactyls. Cranial, dental, and postcranial elements allow a revision of species and the recognition of a new anthracobunid genus.
View Article and Find Full Text PDFBackground: The p53 tumor suppressor protein is a transcription factor that initiates transcriptional programs aimed at inhibiting carcinogenesis. p53 represses metabolic pathways that support tumor development (such as glycolysis and the pentose phosphate pathway (PPP)) and enhances metabolic pathways that are considered counter-tumorigenic such as fatty acid oxidation.
Findings: In an attempt to comprehensively define metabolic pathways regulated by p53, we performed two consecutive high-throughput analyses in human liver-derived cells with varying p53 statuses.
Cancer associated fibroblasts (CAFs) are a subpopulation of cells that reside within the tumor microenvironment and promotes the transformation process by encouraging tumor growth, angiogenesis, inflammation, and metastasis. CAF-specific proteins serve as both prognostic markers and targets for anticancer drugs. With the growing interest in CAFs, several controversial issues have been raised, including the genomic landscape of these cells, the identity of specific markers, and their cell of origin.
View Article and Find Full Text PDFMutations in the p53 tumor suppressor protein are highly frequent in tumors and often endow cells with tumorigenic capacities. We sought to examine a possible role for mutant p53 in the cross-talk between cancer cells and their surrounding stroma, which is a crucial factor affecting tumor outcome. Here we present a novel model which enables individual monitoring of the response of cancer cells and stromal cells (fibroblasts) to co-culturing.
View Article and Find Full Text PDFCytochrome P450 (P450) enzymes are abundantly expressed in the human liver where they hydroxylate organic substrates. In a microarray screen performed in human liver cells, we found a group of eleven P450 genes whose expression was induced by p53 (CYP3A4, CYP3A43, CYP3A5, CYP3A7, CYP4F2, CYP4F3, CYP4F11, CYP4F12, CYP19A1, CYP21A2 and CYP24A1). The mode of regulation of four representative genes (CYP3A4, CYP3A7, CYP4F2 and CYP4F3) was further characterized.
View Article and Find Full Text PDFMesenchymal stromal cells (MSC) are used extensively in clinical trials; however, the possibility that MSCs have a potential for malignant transformation was raised. We examined the genomic stability versus the tumor-forming capacity of multiple mouse MSCs. Murine MSCs have been shown to be less stable and more prone to malignant transformation than their human counterparts.
View Article and Find Full Text PDFCell Death Differ
February 2013
The process of somatic cell reprogramming is gaining increasing interest as reprogrammed cells are considered to hold a great therapeutic potential. However, with current technologies this process is relatively inefficient. Recent studies reported that inhibition of the p53 tumor suppressor profoundly facilitates reprogramming and attributed this effect to the ability of p53 to restrict proliferation and induce apoptosis.
View Article and Find Full Text PDFUncontrolled accumulation of reactive oxygen species (ROS) causes oxidative stress and induces harmful effects. Both high ROS levels and p53 mutations are frequent in human cancer. Mutant p53 forms are known to actively promote malignant growth.
View Article and Find Full Text PDFThe theoretical framework for the field of cancer research is based on two main principles. The first is that cancer advances in a stepwise manner, with each alteration driving cells further toward a malignant state. Second, to cure cancer we must target only cancer-specific properties.
View Article and Find Full Text PDFConcomitant expression of mutant p53 and oncogenic Ras, leading to cellular transformation, is well documented. However, the mechanisms by which the various mutant p53 categories cooperate with Ras remain largely obscure. From this study we suggest that different mutant p53 categories cooperate with H-Ras in different ways to induce a unique expression pattern of a cancer-related gene signature (CGS).
View Article and Find Full Text PDFBackground & Aims: In this study we aimed at characterizing the regulation of hepatic metabolic pathways by the p53 transcription factor.
Methods: Analysis of gene expression following alteration of p53 status in several human- and mouse-derived cells using microarray analysis, quantitative real-time PCR, chromatin immunoprecipitation, and reporter gene assays. A functional assay was performed to determine lipid transfer activity.
Cancer is viewed as being governed by several aberrant biological events defined by Weinberg and Hanahan as 'hallmarks'. In most human cancers the tumour suppressor p53 is mutated, leading to its malfunction and to the acquirement of oncogenic activities, termed 'gain of function'. This commentary links mutant p53 activities to the hallmarks of cancer, describing its involvement in resistance to apoptosis, genomic instability, aberrant cell cycle, invasion and metastasis, tumour microenvironment, and inflammation.
View Article and Find Full Text PDFCompelling evidences have rendered the tumor microenvironment a crucial determinant in cancer outcome. Activating transcription factor 3 (ATF3), a stress response transcription factor, is known to have a dichotomous role in tumor cells, acting either as a tumor suppressor or an oncogene in a context-dependent manner. However, its expression and possible role in the tumor microenvironment are hitherto unknown.
View Article and Find Full Text PDFProstate cancer is the most common non-dermatologic malignancy in men in the Western world. Recently, a frequent chromosomal aberration fusing androgen regulated TMPRSS2 promoter and the ERG gene (TMPRSS2/ERG) was discovered in prostate cancer. Several studies demonstrated cooperation between TMPRSS2/ERG and other defective pathways in cancer progression.
View Article and Find Full Text PDFA mutation within one allele of the p53 tumor suppressor gene can inactivate the remaining wild-type allele in a dominant-negative manner and in some cases can exert an additional oncogenic activity, known as mutant p53 'gain of function' (GOF). To study the role of p53 mutations in prostate cancer and to discriminate between the dominant-negative effect and the GOF activity of mutant p53, we measured, using microarrays, the expression profiles of three immortalized prostate epithelial cultures expressing wild-type, inactivated p53 or mutated p53. Analysis of these gene expression profiles showed that both inactivated p53 and p53(R175H) mutant expression resulted in the upregulation of cell cycle progression genes.
View Article and Find Full Text PDFThe p53 tumor suppressor coordinates a multitude of cellular and organismal processes and exerts its activities mainly by activation of gene transcription. Here we describe the transcriptional activation of ectodysplasin A2 receptor (EDA2R) by p53 in a variety of cell types and tissues. We demonstrate that treatment of cancer cells with the ligand EDA-A2, known to specifically activate EDA2R, results in p53-dependent cell death.
View Article and Find Full Text PDFPartial gain of chromosome arm 17q is an abundant aberrancy in various cancer types such as lung and prostate cancer with a prominent occurrence and prognostic significance in neuroblastoma--one of the most common embryonic tumors. The specific genetic element/s in 17q responsible for the cancer-promoting effect of these aberrancies is yet to be defined although many genes located in 17q have been proposed to play a role in malignancy. We report here the characterization of a naturally-occurring, non-reciprocal translocation der(X)t(X;17) in human lung embryonal-derived cells following continuous culturing.
View Article and Find Full Text PDF