In the present work, solvent casting and Pickering emulsion methods are studied to enhance the mechanical properties of polylactic acid (PLA) composites containing surface-modified cellulose nanomaterials. To enhance the compatibility and the adhesion at the interface, cellulose nanocrystal (CNC) was functionalized by 2,4-methylene diphenyl diisocyanate (MDI) and castor oil. Their results demonstrated that the Pickering emulsion method led to better dispersion of CNC in composites, resulting in improved tensile strength, flexibility, and thermal stability (compared with solvent-casted ones).
View Article and Find Full Text PDFIn the global context of environmental awareness, the present research proposes a sustainable alternative to the widely used petroleum-based epoxy coatings. Epoxidized corn oil (ECO) was tested as potential matrix for advanced nanocomposite coating materials reinforced with 0.25 to 1 wt.
View Article and Find Full Text PDFEpoxy nanocomposites derived from linseed oil, reinforced with graphene oxide (GO) and montmorillonite (MMT) nanostructures, were synthesized. The nanohybrids were developed by enriching the structure of MMT and GO with primary amines through a common and simplified method, which implies physical interactions promoted by ultrasonic processing energy. The influence of the new nanoreinforcing agents along with neat ones on the overall properties of the biobased epoxy materials for coating applications was assessed.
View Article and Find Full Text PDFThis study presents the synthesis and characterization of alginate-based nanocomposite peelable films, reinforced by carbon nanofibers (CNFs) decorated with nanoparticles that possess remarkable antimicrobial properties. These materials are suitable for immediate decontamination applications, being designed as fluid formulations that can be applied on contaminated surfaces, and subsequently, they can rapidly form a peelable film via divalent ion crosslinking and can be easily peeled and disposed of. Silver, copper, and zinc oxide nanoparticles (NPs) were synthesized using superficial oxidized carbon nanofibers (CNF-ox) as support.
View Article and Find Full Text PDFDue to environmental concerns, as well as its exceptional physical and mechanical capabilities, biodegradability, and optical and barrier qualities, nanocellulose has drawn a lot of interest as a source of reinforcing materials that are nanometer sized. This article focuses on how to manufacture cellulose nanomaterials from cotton by using different types of acids such as HSO and HCI in different concentrations and in the presence of enzymes such as cellulase and xylanase. Two different types of bleaching methods were used before acid and enzyme hydrolysis.
View Article and Find Full Text PDFSustainable nanocomposite materials based on different functionalized nanocellulose (NC) structures embedded in epoxidized linseed oil (ELO) were developed as foundation toward a greener approach for anticorrosive coating evolution. The work leans on functionalization with (3-aminopropyl) triethoxysilane (APTS), (3-glycidyloxypropyl)trimethoxysilane (GPTS), and vanillin (V) of NC structures isolated from plum seed shells, evaluated as potential reinforcing agents for the increase of thermomechanical properties and water resistance of epoxy nanocomposites from renewable resources. The successful surface modification was confirmed from the deconvolution of X-ray photoelectron spectra for C 1s and correlated with Fourier transform infrared (FTIR) data.
View Article and Find Full Text PDFBio-based composites were developed from the epoxy derivatives of oil and kraft lignin (ELALO and EpLnK), using UV radiation as a low energy consumption tool for the oxiranes reaction. To avoid the filler sedimentation or its inhomogeneous distribution in the oil matrix, different structure-directing agents (SDA) were employed: 1,3:2,4-dibenzylidene-D-sorbitol (DBS), 12-hydroxystearic acid (HSA) and sorbitan monostearate (Span 60). The SDA and EpLnK effect upon the ELALO-based formulations, their curing reaction and the performance of the resulting materials were investigated.
View Article and Find Full Text PDFConsidering its great industrial potential, epoxidized linseed oil (ELO) was crosslinked with different agents, both natural and synthetic: citric acid (CA, in the presence of water-W, or tetrahydrofuran-THF, as activator molecules) and Jeffamine D230, respectively, resulting bio-based polymeric matrices, studied further, comparatively, in terms of their properties, through different methods. Thermal curing parameters were established by means of Differential Scanning Calorimetry (DSC). Fourier transform Infrared Spectroscopy (FTIR) and DSC were used to identify the reactivity of each ELO-based formulation, discussing the influence of the employed curing systems under the conversion of the epoxy rings.
View Article and Find Full Text PDFThis study presents the functionalization and characterization of graphene and electromagnetic interference (EMI) attenuation capacity in epoxy-nanocomposites. The modification of graphene involved both small molecules and polymers for compatibilization with epoxy resin components to provide EMI shielding. The TGA and RAMAN analyses confirmed the synthesis of graphene with a different layer thickness of the graphene sheets.
View Article and Find Full Text PDFWe designed graphene oxide composites with increased morphological and structural variability using fatty acid-coupled polysaccharide co-polymer as the continuous phase. The matrix was synthesized by N, O-acylation of chitosan with palmitic and lauric acid. The obtained co-polymer was crosslinked with genipin and composited with graphene oxide.
View Article and Find Full Text PDFThe field of tissue engineering is constantly evolving as it aims to develop bioengineered and functional tissues and organs for repair or replacement. Due to their large surface area and ability to interact with proteins and peptides, graphene oxides offer valuable physiochemical and biological features for biomedical applications and have been successfully employed for optimizing scaffold architectures for a wide range of organs, from the skin to cardiac tissue. This review critically focuses on opportunities to employ protein-graphene oxide structures either as nanocomposites or as biocomplexes and highlights the effects of carbonaceous nanostructures on protein conformation and structural stability for applications in tissue engineering and regenerative medicine.
View Article and Find Full Text PDFNanostructures are more and more evolved through extensive research on their functionalities; thus, the aim of this study was to obtain layered clay-graphene oxide nanohybrids with application as reinforcing agents in polyurea nanocomposites with enhanced thermal-mechanical and fire-retardant properties. Montmorillonite (MMT) was combined with graphene oxide (GO) and amine functionalized graphene oxide (GOD) through a new cation exchange method; the complex nanostructures were analyzed through FTIR and XPS to assess ionic interactions between clay layers and GO sheets by C1s deconvolution and specific C sp3, respective/ly, C-O secondary peaks appearance. The thermal decomposition of nanohybrids showed a great influence of MMT layers in TGA, while the XRD patterns highlighted mutual MMT and GO sheets crystalline-structure disruption by the d (002) shift 2θ = 6.
View Article and Find Full Text PDFEpoxidized linseed oil (ELO) and kraft lignin (LnK) were used to obtain new sustainable composites as corrosion protection layers through a double-curing procedure involving UV radiation and thermal curing to ensure homogeneous distribution of the filler. The crosslinked structures were confirmed by Fourier-transform infrared spectrometry (FTIR), by comparative monitorization of the absorption band at 825 cm, attributed to the stretching vibration of epoxy rings. Thermal degradation behavior under N2 gas indicates that the higher LnK content, the better thermal stability of the composites (over 30 °C of Td10% for ELO + 15% LnK), while for the experiment under air-oxidant atmosphere, the lower LnK content (5%) conducted to the more thermo-stable material.
View Article and Find Full Text PDFThe present paper is focused on evaluating the most suitable dispersion method in the epoxy matrix of two self-healing systems containing dicyclopentadiene (DCPD) and 5-ethylidene-2-norbornene (ENB) monomers encapsulated in a urea-formaldehyde (UF) shell, prior to integration, fabrication and impact testing of specimens. Both microstructural analysis and three-point bending tests were performed to evaluate and assess the optimum dispersion method. It was found that ultrasonication damages the microcapsules of both healing systems, thus magnetic stirring was used for the dispersion of both healing systems in the epoxy matrix.
View Article and Find Full Text PDF