Mater Sci Eng C Mater Biol Appl
May 2016
The integration of ceramic powders in composite materials for bone scaffolds can improve the osseointegration process. This work was aimed to the synthesis and characterization of new collagen-hydroxyapatite/barium titanate (Coll-HA/BT) composite materials starting from barium titanate (BT) nanopowder, hydroxyapatite (HA) nanopowder and collagen (Coll) gel. BT nanopowder was produced by combining two wet-chemical approaches, sol-gel and hydrothermal methods.
View Article and Find Full Text PDFThe major goal of bone tissue engineering is to develop bioconstructs which substitute the functionality of damaged natural bone structures as much as possible if critical-sized defects occur. Scaffolds that mimic the structure and composition of bone tissue and cells play a pivotal role in bone tissue engineering applications. First, composition, properties and in vivo synthesis of bone tissue are presented for the understanding of bone formation.
View Article and Find Full Text PDFThe number of ligament injuries increases every year and concomitantly the need for materials or systems that can reconstruct the ligament. Limitations imposed by autografts and allografts in ligament reconstruction together with the advances in materials science and biology have attracted a lot of interest for developing systems and materials for ligament replacement or reconstruction. This review intends to synthesize the major steps taken in the development of polymer-based materials for anterior cruciate ligament, their advantages and drawbacks and the results of different in vitro and in vivo tests.
View Article and Find Full Text PDFA layer-by layer technique was successfully used to obtain collagen/hydroxyapatite-magnetite-cisplatin (COLL/HAn-Fe3O4-CisPt, n=1-7) composite materials with a variable content of hydroxyapatite intended for use in the treatment of bone cancer. The main advantages of this system are the possibility of controlling the rate of delivery of cytostatic agents, the presence of collagen and hydroxyapatite to ensure more rapid healing of the injured bone tissue, and the potential for magnetite to be a passive antitumoral component that can be activated when an appropriate external electromagnetic field is applied. In vitro cytotoxicity assays performed on the COLL/HAn-Fe3O4-CisPt materials obtained using a layer-by layer method confirmed their antitumoral activity.
View Article and Find Full Text PDFThe study of nerve regeneration and functional recovery of the injured peripheral nerves represents a worldwide subject of clinical and scientific research. Our team aimed to obtain the first guide for nerve regeneration, bioartificial and biodegradable, using exclusively Romanian resources and having the advantages of price and quality, over the imported nerve conduits already used in clinical practice. First steps of this project consisted in obtaining the prototype of nerve guide conduit and its' testing in vitro and in vivo.
View Article and Find Full Text PDF