Publications by authors named "Madalena Tarsounas"

In a recent paper in Nature, Petropoulos et al. report that PARP1 acts together with the replisome components TIMELESS and TIPIN to protect the genome from transcription-replication conflicts, which has important implications for the clinical use of PARP inhibitors.

View Article and Find Full Text PDF

Cells experiencing DNA replication stress enter mitosis with under-replicated DNA, which activates a repair mechanism known as mitotic DNA synthesis (MiDAS). Here we describe a protocol to identify at genome wide and at high resolution the genomic sites where MiDAS occurs in cells exposed to aphidicolin. We use EdU incorporation to label nascent DNA in mitotic cells, followed by isolation of the EdU-labeled DNA and next-generation sequencing.

View Article and Find Full Text PDF

Cells have evolved a complex network of biochemical pathways, collectively known as the DNA damage response (DDR), to prevent detrimental mutations from being passed on to their progeny. The DDR coordinates DNA repair with cell-cycle checkpoint activation and other global cellular responses. Genes encoding DDR factors are frequently mutated in cancer, causing genomic instability, an intrinsic feature of many tumours that underlies their ability to grow, metastasize and respond to treatments that inflict DNA damage (such as radiotherapy).

View Article and Find Full Text PDF

The telomeric repeat-binding factor 2 (TRF2) is a telomere-capping protein that plays a key role in the maintenance of telomere structure and function. It is highly expressed in different cancer types, and it contributes to cancer progression. To date, anti-cancer strategies to target TRF2 remain a challenge.

View Article and Find Full Text PDF

Aberrant replication causes cells lacking BRCA2 to enter mitosis with under-replicated DNA, which activates a repair mechanism known as mitotic DNA synthesis (MiDAS). Here, we identify genome-wide the sites where MiDAS reactions occur when BRCA2 is abrogated. High-resolution profiling revealed that these sites are different from MiDAS at aphidicolin-induced common fragile sites in that they map to genomic regions replicating in the early S-phase, which are close to early-firing replication origins, are highly transcribed, and display R-loop-forming potential.

View Article and Find Full Text PDF

The cells with compromised BRCA1 or BRCA2 (BRCA1/2) function accumulate stalled replication forks, which leads to replication-associated DNA damage and genomic instability, a signature of BRCA1/2-mutated tumours. Targeted therapies against BRCA1/2-mutated tumours exploit this vulnerability by introducing additional DNA lesions. Because homologous recombination (HR) repair is abrogated in the absence of BRCA1 or BRCA2, these lesions are specifically lethal to tumour cells, but not to the healthy tissue.

View Article and Find Full Text PDF

Telomerase represents an attractive target in oncology as it is expressed in cancer but not in normal tissues. The oligonucleotide inhibitors of telomerase represent a promising anticancer strategy, although poor cellular uptake can restrict their efficacy. In this study, gold nanoparticles (AuNPs) were used to enhance oligonucleotide uptake.

View Article and Find Full Text PDF

BRCA1 or BRCA2 germline mutations predispose to breast, ovarian and other cancers. High-throughput sequencing of tumour genomes revealed that oncogene amplification and BRCA1/2 mutations are mutually exclusive in cancer, however the molecular mechanism underlying this incompatibility remains unknown. Here, we report that activation of β-catenin, an oncogene of the WNT signalling pathway, inhibits proliferation of BRCA1/2-deficient cells.

View Article and Find Full Text PDF

Cancer immunotherapies enhance anti-tumor immune responses using checkpoint inhibitors, such as PD-1 or PD-L1 inhibitors. Recent studies, however, have extended the scope of immunotherapeutics by unveiling DNA damage-induced innate immunity as a novel target for cancer treatment. Elucidating the interplay among the DNA damage response (DDR), cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway activation, and anti-tumoral immunity is critical for the development of effective cancer immunotherapies.

View Article and Find Full Text PDF

The tumour suppressor breast cancer type 1 susceptibility protein (BRCA1) promotes DNA double-strand break (DSB) repair by homologous recombination and protects DNA replication forks from attrition. BRCA1 partners with BRCA1-associated RING domain protein 1 (BARD1) and other tumour suppressor proteins to mediate the initial nucleolytic resection of DNA lesions and the recruitment and regulation of the recombinase RAD51. The discovery of the opposing functions of BRCA1 and the p53-binding protein 1 (53BP1)-associated complex in DNA resection sheds light on how BRCA1 influences the choice of homologous recombination over non-homologous end joining and potentially other mutagenic pathways of DSB repair.

View Article and Find Full Text PDF

Heterozygous germline mutations in BRCA2 predispose to breast and ovarian cancer. Contrary to non-cancerous cells, where BRCA2 deletion causes cell cycle arrest or cell death, tumors carrying BRCA2 inactivation continue to proliferate. Here we set out to investigate adaptation to loss of BRCA2 focusing on genome-wide transcriptome alterations.

View Article and Find Full Text PDF

Telomerase is expressed in the majority (>85%) of tumors, but has restricted expression in normal tissues. Long-term telomerase inhibition in malignant cells results in progressive telomere shortening and reduction in cell proliferation. Here we report the synthesis and characterization of radiolabeled oligonucleotides that target the RNA subunit of telomerase, hTR, simultaneously inhibiting enzymatic activity and delivering radiation intracellularly.

View Article and Find Full Text PDF

Due to compromised homologous recombination (HR) repair, BRCA1- and BRCA2-mutated tumours accumulate DNA damage and genomic rearrangements conducive of tumour progression. To identify drugs that target specifically BRCA2-deficient cells, we screened a chemical library containing compounds in clinical use. The top hit was chlorambucil, a bifunctional alkylating agent used for the treatment of chronic lymphocytic leukaemia (CLL).

View Article and Find Full Text PDF

Inhibitors of poly(ADP-ribose) (PAR) polymerase (PARPi) have recently entered the clinic for the treatment of homologous recombination (HR)-deficient cancers. Despite the success of this approach, drug resistance is a clinical hurdle, and we poorly understand how cancer cells escape the deadly effects of PARPi without restoring the HR pathway. By combining genetic screens with multi-omics analysis of matched PARPi-sensitive and -resistant Brca2-mutated mouse mammary tumors, we identified loss of PAR glycohydrolase (PARG) as a major resistance mechanism.

View Article and Find Full Text PDF
Article Synopsis
  • Maintenance of genome integrity relies on cooperation between Fanconi anemia (FA) and homologous recombination (HR) repair pathways, making cells sensitive to DNA damage from acetaldehyde, especially those lacking FANCD2.
  • Inactivation of HR factors like BRCA1, BRCA2, or RAD51 increases sensitivity to acetaldehyde, indicating that even with a functioning FA pathway, cells can still be vulnerable to this type of DNA damage.
  • The study suggests that inhibiting enzymatic detoxification of acetaldehyde, particularly using disulfiram, could selectively target and eliminate BRCA1/2-deficient cells and tumors, presenting a new potential therapeutic strategy.
View Article and Find Full Text PDF

Failure to restart replication forks stalled at genomic regions that are difficult to replicate or contain endogenous DNA lesions is a hallmark of BRCA2 deficiency. The nucleolytic activity of MUS81 endonuclease is required for replication fork restart under replication stress elicited by exogenous treatments. Here we investigate whether MUS81 could similarly facilitate DNA replication in the context of BRCA2 abrogation.

View Article and Find Full Text PDF

Mutations in homologous recombination (HR) genes BRCA1 and BRCA2 predispose to tumorigenesis. HR-deficient cancers are hypersensitive to Poly (ADP ribose)-polymerase (PARP) inhibitors, but can acquire resistance and relapse. Mechanistic understanding how PARP inhibition induces cytotoxicity in HR-deficient cancer cells is incomplete.

View Article and Find Full Text PDF

G-quadruplex stabilizers are an established opportunity in anticancer chemotherapy. To circumvent the antiproliferative effects of G4 ligands, cancer cells recruit PARP enzymes at telomeres. Herein, starting from the structural similarity of a potent G4 ligand previously discovered by our group and a congeneric PARP inhibitor, a library of derivatives was synthesized to discover the first dual G4/PARP ligand.

View Article and Find Full Text PDF

The tumor suppressor BRCA2 plays a key role in genome integrity by promoting replication-fork stability and homologous recombination (HR) DNA repair. Here we report that human cancer cells lacking BRCA2 rely on the Fanconi anemia protein FANCD2 to limit replication-fork progression and genomic instability. Our results identify a new role of FANCD2 in limiting constitutive replication stress in BRCA2-deficient cells, thereby affecting cell survival and treatment responses.

View Article and Find Full Text PDF

The Fanconi anemia (FA) pathway plays a central role in the repair of DNA interstrand crosslinks (ICLs) and regulates cellular responses to replication stress. Homologous recombination (HR), the error-free pathway for double-strand break (DSB) repair, is required during physiological cell cycle progression for the repair of replication-associated DNA damage and protection of stalled replication forks. Substantial crosstalk between the two pathways has recently been unravelled, in that key HR proteins such as the RAD51 recombinase and the tumour suppressors BRCA1 and BRCA2 also play important roles in ICL repair.

View Article and Find Full Text PDF

G-quadruplex (G4)-forming genomic sequences, including telomeres, represent natural replication fork barriers. Stalled replication forks can be stabilized and restarted by homologous recombination (HR), which also repairs DNA double-strand breaks (DSBs) arising at collapsed forks. We have previously shown that HR facilitates telomere replication.

View Article and Find Full Text PDF

Loss of telomere protection occurs during physiological cell senescence and ageing, due to attrition of telomeric repeats and insufficient retention of the telomere-binding factor TRF2. Subsequently formed telomere fusions trigger rampant genomic instability leading to cell death or tumorigenesis. Mechanistically, telomere fusions require either the classical non-homologous end-joining (C-NHEJ) pathway dependent on Ku70/80 and LIG4, or the alternative non-homologous end-joining (A-NHEJ), which relies on PARP1 and LIG3.

View Article and Find Full Text PDF