Background: Human plasma contains RNA transcripts released by multiple cell types within the body. Single-cell transcriptomic analysis allows the cellular origin of circulating RNA molecules to be elucidated at high resolution and has been successfully utilized in the pregnancy context. We explored the application of a similar approach to develop plasma RNA markers for cancer detection.
View Article and Find Full Text PDFBackground: Although the characterization of cell-free extrachromosomal circular DNA (eccDNA) has gained much research interest, the methylation status of these molecules is yet to be elucidated. We set out to compare the methylation densities of plasma eccDNA of maternal and fetal origins, and between small and large molecules. The clearance of fetal eccDNA from maternal circulation was also investigated.
View Article and Find Full Text PDFBackground: Double-stranded DNA in plasma is known to carry single-stranded ends, called jagged ends. Plasma DNA jagged ends are biomarkers for pathophysiologic states such as pregnancy and cancer. It remains unknown whether urinary cell-free DNA (cfDNA) molecules have jagged ends.
View Article and Find Full Text PDFPlasma DNA fragmentomics is an emerging area of research covering plasma DNA sizes, end points, and nucleosome footprints. In the present study, we found a significant increase in the diversity of plasma DNA end motifs in patients with hepatocellular carcinoma (HCC). Compared with patients without HCC, patients with HCC showed a preferential pattern of 4-mer end motifs.
View Article and Find Full Text PDFEpstein-Barr virus (EBV) is associated with a number of diseases, including malignancies. Currently, it is not known whether patients with different EBV-associated diseases have different methylation profiles of circulating EBV DNA. Through whole-genome methylation analysis of plasma samples from patients with nasopharyngeal carcinoma (NPC), EBV-associated lymphoma and infectious mononucleosis, we demonstrate that EBV DNA methylation profiles exhibit a disease-associated pattern.
View Article and Find Full Text PDFBackground: The current diagnosis and monitoring of bladder cancer are heavily reliant on cystoscopy, an invasive and costly procedure. Previous efforts in urine-based detection of bladder cancer focused on targeted approaches that are predicated on the tumor expressing specific aberrations. We aimed to noninvasively detect bladder cancer by the genome-wide assessment of methylomic and copy number aberrations (CNAs).
View Article and Find Full Text PDFCirculating tumor-derived cell-free DNA (ctDNA) analysis offers an attractive noninvasive means for detection and monitoring of cancers. Evidence for the presence of cancer is dependent on the ability to detect features in the peripheral circulation that are deemed as cancer-associated. We explored approaches to improve the chance of detecting the presence of cancer based on sequence information present on ctDNA molecules.
View Article and Find Full Text PDFRecently published international guidelines recommend the clinical use of noninvasive prenatal test (NIPT) for aneuploidy screening only among pregnant women whose fetuses are deemed at high risk. The applicability of NIPT to aneuploidy screening among average risk pregnancies requires additional supportive evidence. A key determinant of the reliability of aneuploidy NIPT is the fetal DNA fraction in maternal plasma.
View Article and Find Full Text PDFBackground: Placental mRNA was detected in maternal whole blood, raising the possibility of using maternal blood for noninvasive prenatal diagnosis. We investigated fetal mRNA detection in maternal whole blood and determined if it offered advantages over maternal plasma analysis.
Methodology: The concentrations of placental expressed genes, CSH1, KISS1, PLAC4 and PLAC1 in plasma and whole blood from healthy pregnant and non-pregnant individuals were compared by real-time quantitative reverse-transcriptase polymerase chain reaction analysis.
Current methods for prenatal diagnosis of chromosomal aneuploidies involve the invasive sampling of fetal materials using procedures such as amniocentesis or chorionic villus sampling and constitute a finite risk to the fetus. Here, we outline a strategy for fetal chromosome dosage assessment that can be performed noninvasively through analysis of placental expressed mRNA in maternal plasma. We achieved noninvasive prenatal diagnosis of fetal trisomy 21 by determining the ratio between alleles of a single-nucleotide polymorphism (SNP) in PLAC4 mRNA, which is transcribed from chromosome 21 and expressed by the placenta, in maternal plasma.
View Article and Find Full Text PDFAn analysis of gene expression profiles obtained from cervical cancers was performed to find those genes most aberrantly expressed. Total RNA was prepared from 29 samples of cervical squamous cell carcinoma and 18 control samples, and hybridized to Affymetrix oligonucleotide microarrays with probe sets complementary to over 20,000 transcripts. Unsupervised hierarchical clustering of the expression data readily distinguished normal cervix from cancer.
View Article and Find Full Text PDF