Publications by authors named "Macphee A"

Objective: Fin clipping is the standard DNA sampling technique for whole genome sequencing (WGS) of small fish. The collection of fin clips requires anaesthesia or even euthanisation of the individual. Swabbing may be a less invasive, non-lethal alternative to fin-clipping.

View Article and Find Full Text PDF

Purpose Of Review: Diabetes is the most common cause of kidney disease in individuals that receive a kidney transplant, and those without pre-existing diabetes are at greater risk of developing diabetes following kidney transplant. A class of diabetes treatment medications called glucagon-like peptide-1 receptor agonists (GLP-1RA) has seen recent widespread use for people with diabetes or obesity, with efficacy for improved glycemic control, weight loss, and reduced risk of cardiovascular events. Given these benefits, and indications for use that often co-occur in kidney transplant recipients, use of GLP-1RAs warrants consideration in this population.

View Article and Find Full Text PDF

The National Ignition Facility produced the first nuclear fusion experiment demonstrating net positive energy gain on December 5, 2022. The x-ray streak camera that measures the bang time and burn-width from this landmark experiment had an electronic failure and did not record data. The CCD sensor was replaced with a radiation hardened CMOS sensor that has since demonstrated successful operation on repeat ignition shots.

View Article and Find Full Text PDF
Article Synopsis
  • - The text discusses the design of sagittally focusing x-ray crystal spectrometers that use elliptical profiles to enhance plasma diagnostics, especially in scenarios with high neutron emissions.
  • - These spectrometers are designed with adjustable radii of curvature to focus on different photon energies and optimize the arrangement to minimize neutron background interference.
  • - Two spectrometer designs are proposed: one for x-ray continuum spectroscopy with high magnification and limited resolution, and another for time-resolved spectroscopy with high demagnification aimed at improving spectral resolution, which have been validated through ray tracing.
View Article and Find Full Text PDF

Bayesian inference applied to x-ray spectroscopy data analysis enables uncertainty quantification necessary to rigorously test theoretical models. However, when comparing to data, detailed atomic physics and radiation transfer calculations of x-ray emission from non-uniform plasma conditions are typically too slow to be performed in line with statistical sampling methods, such as Markov Chain Monte Carlo sampling. Furthermore, differences in transition energies and x-ray opacities often make direct comparisons between simulated and measured spectra unreliable.

View Article and Find Full Text PDF

Indirect Drive Inertial Confinement Fusion Experiments on the National Ignition Facility (NIF) have achieved a burning plasma state with neutron yields exceeding 170 kJ, roughly 3 times the prior record and a necessary stage for igniting plasmas. The results are achieved despite multiple sources of degradations that lead to high variability in performance. Results shown here, for the first time, include an empirical correction factor for mode-2 asymmetry in the burning plasma regime in addition to previously determined corrections for radiative mix and mode-1.

View Article and Find Full Text PDF

An indirect-drive inertial fusion experiment on the National Ignition Facility was driven using 2.05 MJ of laser light at a wavelength of 351 nm and produced 3.1±0.

View Article and Find Full Text PDF
Article Synopsis
  • * This experiment produced 2.05 MJ of laser energy, resulting in 3.1 MJ of total fusion yield, which exceeds the Lawson criterion for ignition, demonstrating a key milestone in fusion research.
  • * The report details the advancements in target design, laser technology, and experimental methods that contributed to this historic achievement, validating over five decades of research in laboratory fusion.
View Article and Find Full Text PDF

A methodology for measuring x-ray continuum spectra of inertial confinement fusion (ICF) implosions is described. The method relies on the use of ConSpec, a high-throughput spectrometer using a highly annealed pyrolytic graphite crystal [MacDonald et al., J.

View Article and Find Full Text PDF

Purpose Of Review: Glomerulonephritis refers to a rare group of diseases characterized by glomerular inflammation, which collectively are a common cause of kidney failure. Until recently, there was a lack of high-quality clinical trials to inform the care of patients with glomerulonephritides. We identified examples of successful translational research spanning from basic science to clinical applications, and highlight gaps in implementation science.

View Article and Find Full Text PDF

The change in the power balance, temporal dynamics, emission weighted size, temperature, mass, and areal density of inertially confined fusion plasmas have been quantified for experiments that reach target gains up to 0.72. It is observed that as the target gain rises, increased rates of self-heating initially overcome expansion power losses.

View Article and Find Full Text PDF

In indirect drive inertial confinement fusion (ICF) implosions hydrodynamic instability growth at the imploding capsule ablator-DT fuel interface can reduce fuel compressibility and inject ablator into the hot spot hence reducing hot spot pressure and temperature. As a mitigation strategy, a gentle acceleration of this interface is predicted by simulations and theory to significantly reduce this instability growth in the early stage of the implosion. We have performed high-contrast, time-resolved x-ray refraction enhanced radiography (RER) to accurately measure the level of acceleration as a function of the initial laser drive time history for indirect-drive implosions on the National Ignition Facility.

View Article and Find Full Text PDF

Purpose Of Review: The Kidney Research Scientist Core Education and National Training (KRESCENT) is a national Canadian training program for kidney scientists, funded by the Kidney Foundation of Canada (KFOC), the Canadian Institutes of Health Research (CIHR), and the Canadian Society of Nephrology (CSN). We describe our first year of incorporating patient partners into a scientific peer-review committee, the 2017 committee to select senior research trainees and early-career kidney researchers for funding and training, in the hope that it will be helpful to others who wish to integrate the perspective of people with lived experience into the peer-review process.

Sources Of Information: Other peer-review committees, websites, journal articles, patient partners, Kidney Foundation of Canada Research Council, Canadians Seeking Solutions and Innovations to Overcome Chronic Kidney Disease (Can-SOLVE CKD) Patient Council, participants in the 2017 Kidney Foundation of Canada KRESCENT peer-review panel.

View Article and Find Full Text PDF

A Monte Carlo technique has been developed to simulate the expected signal and the statistical noise of x-ray spectrometers that use streak cameras to achieve the time resolution required for ultrafast diagnostics of laser-generated plasmas. The technique accounts for statistics from both the photons incident on the streak camera's photocathode and the electrons emitted by the photocathode travelling through the camera's electron optics to the sensor. We use the technique to optimize the design of a spectrometer, which deduces the temporal history of electron temperature of the hotspot in an inertial confinement fusion implosion from its hard x-ray continuum emission spectra.

View Article and Find Full Text PDF

We present the design of the first igniting fusion plasma in the laboratory by Lawson's criterion that produced 1.37 MJ of fusion energy, Hybrid-E experiment N210808 (August 8, 2021) [Phys. Rev.

View Article and Find Full Text PDF

An inertial fusion implosion on the National Ignition Facility, conducted on August 8, 2021 (N210808), recently produced more than a megajoule of fusion yield and passed Lawson's criterion for ignition [Phys. Rev. Lett.

View Article and Find Full Text PDF

Electron tubes continue to provide the highest speeds possible for recording dynamics of hot high-energy density plasmas. Standard streak camera drive electronics and CCD readout are not compatible with the radiation environment associated with high DT fusion yield inertial confinement fusion experiments >10 14 MeV DT neutrons or >10 n cm ns. We describe a hardened x-ray streak camera developed for the National Ignition Facility and present preliminary results from the first experiment on which it has participated, recording the time-resolved bremsstrahlung spectrum from the core of an inertial confinement fusion implosion at more than 40× the operational neutron yield limit of the previous National Ignition Facility x-ray streak cameras.

View Article and Find Full Text PDF
Article Synopsis
  • * In inertially confined fusion, ignition allows the fusion process to spread into surrounding fuel, potentially leading to higher energy output.
  • * Recent experiments at the National Ignition Facility achieved capsule gains of 5.8 and approached ignition, even though "scientific breakeven" has not yet been fully realized.
View Article and Find Full Text PDF

Evolution of the hot spot plasma conditions was measured using high-resolution x-ray spectroscopy at the National Ignition Facility. The capsules were filled with DD gas with trace levels of Kr and had either a high-density-carbon (HDC) ablator or a tungsten (W)-doped HDC ablator. Time-resolved measurement of the Kr Heβ spectra, absolutely calibrated by a simultaneous time-integrated measurement, allows inference of the electron density and temperature through observing Stark broadening and the relative intensities of dielectronic satellites.

View Article and Find Full Text PDF

Obtaining a burning plasma is a critical step towards self-sustaining fusion energy. A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn, enabling high energy gain. After decades of fusion research, here we achieve a burning-plasma state in the laboratory.

View Article and Find Full Text PDF

Time-resolved radiography can be used to obtain absolute shock Hugoniot states by simultaneously measuring at least two mechanical parameters of the shock, and this technique is particularly suitable for one-dimensional converging shocks where a single experiment probes a range of pressures as the converging shock strengthens. However, at sufficiently high pressures, the shocked material becomes hot enough that the x-ray opacity falls significantly. If the system includes a Lagrangian marker such that the mass within the marker is known, this additional information can be used to constrain the opacity as well as the Hugoniot state.

View Article and Find Full Text PDF

This paper describes a new class of focusing crystal forms for the x-ray Bragg crystal spectroscopy of small, point-like, x-ray sources. These new crystal forms are designed with the aid of sinusoidal spirals, a family of curves, whose shapes are defined by only one parameter, which can assume any real value. The potential of the sinusoidal spirals for the design x-ray crystal spectrometers is demonstrated with the design of a toroidally bent crystal of varying major and minor radii for measurements of the extended x-ray absorption fine structure near the Ta-L3 absorption edge at the National Ignition Facility.

View Article and Find Full Text PDF

We report on the increase in the accelerated electron number and energy using compound parabolic concentrator (CPC) targets from a short-pulse (∼150 fs), high-intensity (>10^{18} W/cm^{2}), and high-contrast (∼10^{8}) laser-solid interaction. We report on experimental measurements using CPC targets where the hot-electron temperature is enhanced up to ∼9 times when compared to planar targets. The temperature measured from the CPC target is 〈T_{e}〉=4.

View Article and Find Full Text PDF

Achieving a high conversion efficiency into relativistic electrons is central to short-pulse laser application and fundamentally relies on creating interaction regions with intensities ≫10^{18}W/cm^{2}. Small focal length optics are typically employed to achieve this goal; however, this solution is impractical for large kJ-class systems that are constrained by facility geometry, debris concerns, and component costs. We fielded target-mounted compound parabolic concentrators to overcome these limitations and achieved nearly an order-of-magnitude increase to the conversion efficiency and more than tripled electron temperature compared to flat targets.

View Article and Find Full Text PDF