Obesity leads to insulin resistance (IR) and type 2 diabetes. In humans, low levels of the hormone prolactin (PRL) correlate with IR, adipose tissue (AT) dysfunction, and increased prevalence of T2D. In obese rats, PRL treatment promotes insulin sensitivity and reduces visceral AT adipocyte hypertrophy.
View Article and Find Full Text PDFObesity rates are increasing almost everywhere in the world, although the pace and timing for this increase differ when populations from developed and developing countries are compared. The sharp and more recent increase in obesity rates in many Latin American countries is an example of that and results from regional characteristics that emerge from interactions between multiple factors. Aware of the complexity of enumerating these factors, we highlight eight main determinants (the physical environment, food exposure, economic and political interest, social inequity, limited access to scientific knowledge, culture, contextual behaviour and genetics) and discuss how they impact obesity rates in Latin American countries.
View Article and Find Full Text PDFMaternal milk supports offspring development by providing microbiota, macronutrients, micronutrients, immune factors, and hormones. The hormone prolactin (PRL) is an important milk component with protective effects against metabolic diseases. Because maternal milk regulates microbiota composition and adequate microbiota protect against the development of metabolic diseases, we aimed to investigate whether PRL/PRL receptor signaling regulates gut microbiota composition in newborn mice at weaning.
View Article and Find Full Text PDFBioactive compounds in plant-based food have protective effects against metabolic alterations, including non-alcoholic fatty liver disease (NAFLD). Bean leaves are widely cultivated in the world and are a source of dietary fiber and polyphenols. High fat/high fructose diet animal models promote deleterious effects in adipose and non-adipose tissues (lipotoxicity), leading to obesity and its comorbidities.
View Article and Find Full Text PDFInsulin resistance is a reduced effect of insulin on its target cells, usually derived from decreased insulin receptor signaling. Insulin resistance contributes to the development of type 2 diabetes (T2D) and other obesity-derived diseases of high prevalence worldwide. Therefore, understanding the mechanisms underlying insulin resistance is of great relevance.
View Article and Find Full Text PDFObesity is a modern pandemic with negative consequences in women's reproductive health. Women with overweight and obesity can develop mammary gland alterations that unable exclusive breastfeeding. Obesity associates with a disturbed lactating mammary gland endocrine environment including a decreased action of the hormone prolactin (PRL), the master regulator of lactation.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
October 2022
The role of prolactin (PRL) favoring metabolic homeostasis is supported by multiple preclinical and clinical studies. PRL levels are key to explaining the direction of its actions. In contrast with the negative outcomes associated with very high (>100 μg/L) and very low (<7 μg/L) PRL levels, moderately high PRL levels, both within but also above the classically considered physiological range are beneficial for metabolism and have been defined as HomeoFIT-PRL.
View Article and Find Full Text PDFInt J Obes (Lond)
June 2022
Background: In obesity, adipose tissue dysfunction resulting from excessive fat accumulation leads to systemic insulin resistance (IR), the underlying alteration of Type 2 Diabetes. The specific pathways dysregulated in dysfunctional adipocytes and the extent to which it affects adipose metabolic functions remain incompletely characterized.
Methods: We interrogated the transcriptional adaptation to increased adiposity in association with insulin resistance in visceral white adipose tissue from lean men, or men presenting overweight/obesity (BMI from 19 to 33) and discordant for insulin sensitivity.
Int J Obes (Lond)
November 2021
Background: Dietary bioactive compounds have been demonstrated to produce several health benefits. Genistein, an isoflavone of soy protein, and resveratrol, a polyphenol from grapes, have been shown to improve insulin sensitivity and to stimulate white adipose tissue (WAT) browning, leading to increased energy expenditure. However, it has not been demonstrated in humans whether genistein or resveratrol have the capacity to stimulate the differentiation of stromal vascular fraction (SVF) cells from white fat into beige adipocytes.
View Article and Find Full Text PDFProlactin (PRL) levels are reduced in the circulation of rats with diabetes or obesity, and lower circulating levels of PRL correlate with increased prevalence of diabetes and a higher risk of metabolic alterations in the clinic. Furthermore, PRL stimulates β-cell proliferation, survival, and insulin production and pregnant mice lacking PRL receptors in β-cells develop gestational diabetes. To investigate the protective effect of endogenous PRL against diabetes outside pregnancy, we compared the number of cases and severity of streptozotocin (STZ)-induced hyperglycemia between C57BL/6 mice null for the PRL receptor gene ( ) and wild-type mice ( ).
View Article and Find Full Text PDFThe hormone prolactin (PRL) is emerging as an important regulator of ocular blood vessels. PRL is pro-angiogenic and acquires anti-angiogenic properties after undergoing proteolytic cleavage to the PRL fragment, vasoinhibin. The vascularisation of the rodent retina develops after birth when it rapidly expands until completion at the end of the first postnatal week.
View Article and Find Full Text PDFThe pituitary hormone prolactin (PRL) regulates a variety of functions beyond reproduction. The association between physiological (pregnancy) and pathological (prolactinoma) hyperprolactinemia and metabolic alterations led to the concept of this hormone being diabetogenic. However, large cohort clinical studies have recently shown that low circulating PRL levels are associated with metabolic disease and represent a risk factor for type 2 diabetes (T2D), whereas high PRL levels are beneficial.
View Article and Find Full Text PDFPurpose: Low prolactin (PRL) serum levels are associated with glucose intolerance and type 2 diabetes in adults, and with metabolic syndrome and obesity in children. In obese rodents, PRL treatment promotes insulin sensitivity by maintaining adipose tissue fitness, and lack of PRL signaling exacerbates obesity-derived metabolic alterations. Since adipose tissue dysfunction is a key factor triggering metabolic alterations, we evaluated whether PRL serum levels are associated with adipocyte hypertrophy (a marker of adipose tissue dysfunction), insulin resistance, and metabolic syndrome in lean, overweight, and obese adult men and women.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
June 2018
The liver grows during the early postnatal period first at slower and then at faster rates than the body to achieve the adult liver-to-body weight ratio (LBW), a constant reflecting liver health. The hormone prolactin (PRL) stimulates adult liver growth and regeneration, and its levels are high in the circulation of newborn infants, but whether PRL plays a role in neonatal liver growth is unknown. Here, we show that the liver produces PRL and upregulates the PRL receptor in mice during the first 2 wk after birth, when liver growth lags behind body growth.
View Article and Find Full Text PDFMaternal diet during lactation affects offspring metabolic health throughout life. Prolactin (PRL) is present in high quantities in maternal milk; however, the effects of milk PRL on the offspring remain poorly characterized. In this study, we evaluated whether feeding a high-fat diet (HFD) to rats during lactation alters PRL, both in the mother's serum and in milk, and whether this factor contributes to HFD-induced metabolic dysfunction in the offspring.
View Article and Find Full Text PDFExcessive accumulation of body fat triggers insulin resistance and features of the metabolic syndrome. Recently, evidence has accumulated that obesity, type 2 diabetes, and metabolic syndrome are associated with reduced levels of serum prolactin (PRL) in humans and rodents, raising the question of whether low PRL levels contribute to metabolic dysfunction. Here, we have addressed this question by investigating the role of PRL in insulin sensitivity and adipose tissue fitness in obese rodents and humans.
View Article and Find Full Text PDFBackground: The metabolic clearance of prolactin (PRL) is partially executed by the kidney. Here, we investigate the urine excretion of PRL in patients with Diabetes Mellitus and renal impairment.
Methods: Serum and urine samples were collected from male, mestizo patients in central Mexico employing a cross-sectional study design.
The levels of the hormone prolactin (PRL) are reduced in the circulation of patients with Type 2 diabetes and in obese children, and lower systemic PRL levels correlate with an increased prevalence of diabetes and a higher risk of metabolic syndrome. The secretion of anterior pituitary (AP) PRL in metabolic diseases may be influenced by the interplay between transforming growth factor β (TGF-β) and tumor necrosis factor α (TNF-α), which inhibit and can stimulate AP PRL synthesis, respectively, and are known contributors to insulin resistance and metabolic complications. Here, we show that TGF-β and TNF-α antagonize the effect of each other on the expression and release of PRL by the GH4C1 lactotrope cell line.
View Article and Find Full Text PDFProlactin (PRL) stimulates the growth of new blood vessels (angiogenesis) either directly through actions on endothelial cells or indirectly by upregulating proangiogenic factors like vascular endothelial growth factor (VEGF). Moreover, PRL acquires antiangiogenic properties after undergoing proteolytic cleavage to vasoinhibins, a family of PRL fragments (including 16 kDa PRL) with potent antiangiogenic, vasoconstrictive, and antivasopermeability effects. In view of the opposing actions of PRL and vasoinhibins, the regulation of the proteases responsible for specific PRL cleavage represents an efficient mechanism for controlling blood vessel growth and function.
View Article and Find Full Text PDFWhite, beige, and brown adipocytes are developmentally and functionally distinct but often occur mixed together within individual depots. To target white, beige, and brown adipocytes for diagnostic or therapeutic purposes, a better understanding of the cell surface properties of these cell types is essential. Using a combination of in silico, in vitro, and in vivo methods, we have identified three new cell surface markers of adipose cell types.
View Article and Find Full Text PDFAs we approach the end of two decades of leptin research, the comparative biology of leptin is just beginning. We now have several leptin orthologs described from nearly every major clade among vertebrates, and are moving beyond gene descriptions to functional studies. Even at this early stage, it is clear that non-mammals display clear functional similarities and differences with their better-studied mammalian counterparts.
View Article and Find Full Text PDFObesity and type 2 diabetes are associated with mitochondrial dysfunction in adipose tissue, but the role for adipose tissue mitochondria in the development of these disorders is currently unknown. To understand the impact of adipose tissue mitochondria on whole-body metabolism, we have generated a mouse model with disruption of the mitochondrial transcription factor A (TFAM) specifically in fat. F-TFKO adipose tissue exhibit decreased mtDNA copy number, altered levels of proteins of the electron transport chain, and perturbed mitochondrial function with decreased complex I activity and greater oxygen consumption and uncoupling.
View Article and Find Full Text PDFExcess adipose tissue is associated with metabolic disease and reduced life span, whereas caloric restriction decreases these risks. Here we show that as mice age, there is downregulation of Dicer and miRNA processing in adipose tissue resulting in decreases of multiple miRNAs. A similar decline of Dicer with age is observed in C.
View Article and Find Full Text PDF