Publications by authors named "Mackenzie Malo"

Radiometal chelator conjugation is a cornerstone of radioimmunotherapy (RIT). Continued interest in selective placement of chelators remains an active topic of discussion in the field. With several simple site-specific methods being recently reported, it was of interest to investigate the benefits and potential drawbacks of the site-specific method with a full comparison to a more typical random conjugation method that is currently utilized in clinical applications.

View Article and Find Full Text PDF

Human space exploration expansion from Low-Earth Orbit to deep space is accelerating the need to monitor and address the known health concerns related to deep space radiation. The human musculoskeletal system is vulnerable to these risks (alongside microgravity) and its health reflects the well-being of other body systems. Multiparametric magnetic resonance imaging (MRI) is an important approach for assessing temporal physiological changes in the musculoskeletal system.

View Article and Find Full Text PDF

Invasive fungal infections (IFIs) such as mucormycosis are causing devastating morbidity and mortality in immunocompromised patients as anti-fungal agents do not work in the setting of a suppressed immune system. The coronavirus disease 2019 (COVID-19) pandemic has created a novel landscape for IFIs in post-pandemic patients, resulting from severe immune suppression caused by COVID-19 infection, comorbidities (diabetes, obesity) and immunosuppressive treatments such as steroids. The antigen-antibody interaction has been employed in radioimmunotherapy (RIT) to deliver lethal doses of ionizing radiation emitted by radionuclides to targeted cells and has demonstrated efficacy in several cancers.

View Article and Find Full Text PDF

Novel therapeutic approaches are much needed for the treatment of osteosarcoma. Targeted radionuclide therapy (TRT) and radioimmunotherapy (RIT) are promising approaches that deliver therapeutic radiation precisely to the tumor site. We have previously developed a fully human antibody, named IF3, that binds to insulin-like growth factor 2 receptor (IGF2R).

View Article and Find Full Text PDF

Metastatic melanoma is a deadly disease that claims thousands of lives each year despite the introduction of several immunotherapeutic agents into the clinic over the past decade, inspiring the development of novel therapeutics and the exploration of combination therapies. Our investigations target melanin pigment with melanin-specific radiolabeled antibodies as a strategy to treat metastatic melanoma. In this study, a theranostic approach was applied by first labeling a chimeric antibody targeting melanin, c8C3, with the SPECT radionuclide Pb for microSPECT/CT imaging of C57Bl6 mice bearing B16-F10 melanoma tumors.

View Article and Find Full Text PDF

Radiation damage is associated with inflammation and immunity in the intestinal mucosa, including gut microbiota. Melanin has a unique capacity to coordinate a biological reaction in response to environmental stimuli, such as radiation exposure. Thus, melanin and melanized microbes have potential to be used for mitigation of injury induced by radiation.

View Article and Find Full Text PDF

Nearly 100,000 individuals are expected to be diagnosed with melanoma in the United States in 2022. Treatment options for late-stage metastatic disease up until the 2010s were few and offered only slight improvement to the overall survival. The introduction of B-RAF inhibitors and anti-CTLA4 and anti-PD-1/PD-L1 immunotherapies into standard of care brought measurable increases in the overall survival across all stages of melanoma.

View Article and Find Full Text PDF

The field of radiation countermeasures is growing, however, currently there are no effective and non-toxic compounds which could be administered orally to the individuals post exposure to high doses of ionising radiation. The pigment melanin is ubiquitous through all kingdoms of life and provides selective advantage under radiation stress through its role as a chemical and physical shield, and its capacity to respond and react to exposures. Soluble allomelanin was administered to mice following whole-body exposure to lethal or sublethal doses of gamma radiation to determine its capacity to mitigate the effects of acute radiation syndrome, and its utility as a radiation countermeasure.

View Article and Find Full Text PDF

Melanized fungi have been isolated from some of the harshest radioactive environments, and their ability to thrive in these locations is in part due to the pigment melanin. Melanin imparts a selective advantage to fungi by providing a physical shield, a chemical shield, and possibly a signaling mechanism. In previous work we demonstrated that protracted exposure of the melanized yeast to mixed alpha-, beta-, and gamma-emitting radiation resulted in an adapted strain able to mount a unique response to ionizing radiation in the environment in a melanin-dependent fashion.

View Article and Find Full Text PDF

Melanoma incidence continues to rise, and while therapeutic approaches for early stage cases are effective, metastatic melanoma continues to be associated with high mortality. Immune checkpoint blockade (ICB) has demonstrated clinical success with approved drugs in cohorts of patients with metastatic melanoma and targeted radionuclide therapy strategies showed promise in several clinical trials against various cancers including metastatic melanoma. This led our group to investigate the combination of these two treatments which could be potentially offered to patients with metastatic melanoma not responsive to ICB alone.

View Article and Find Full Text PDF

: With the limited options available for therapy to treat invasive fungal infections (IFI), radioimmunotherapy (RIT) can potentially offer an effective alternative treatment. Microorganism-specific monoclonal antibodies have shown promising results in the experimental treatment of fungal, bacterial, and viral infections, including our recent and encouraging results from treating mice infected with with Bi-labeled antibody 400-2 to (1→3)-β-glucan. In this work, we performed a safety study of Bi-400-2 antibody in healthy dogs as a prelude for a clinical trial in companion dogs with acquired invasive fungal infections and later on in human patients with IFI.

View Article and Find Full Text PDF

Black fungi withstand extreme stresses partly due to the presence of melanin. Melanin is associated with structural integrity and resistance to chemical and radiation stress. This results in improved health and fitness, specifically in extreme conditions.

View Article and Find Full Text PDF

Daratumumab is an anti-CD38 directed monoclonal antibody approved for the treatment of multiple myeloma (MM) and functions primarily via Fc-mediated effector mechanisms such as complement-dependent cytotoxicity (CDC), antibody-dependent cell cytotoxicity (ADCC), antibody-dependent cellular phagocytosis, and T-cell activation. However, not all patients respond to daratumumab therapy and management of MM remains challenging. Radioimmunotherapy with alpha particle-emitting radionuclides represents a promising approach to significantly enhance the potency of therapeutic antibodies in cancer treatment.

View Article and Find Full Text PDF

Osteosarcoma (OS) represents 3.4% of all childhood cancers with overall survival of 70% not improving in 30 years. The consistent surface overexpression of insulin-like growth factor-2 receptor (IGF2R) has been reported in commercial and patient-derived xenograft (PDX) OS cell lines.

View Article and Find Full Text PDF

Melanoma is a cancer with increasing incidence and there is a need for alternatives to immunotherapy within effective approaches to treatment of metastatic melanoma. We performed comparative radioimmunotherapy (RIT) of experimental B16-F10 melanoma with novel humanized IgG to melanin h8C3 labeled with a beta emitter, Lu, and an alpha-emitter, Bi, as well as biodistribution, microSPECT/CT imaging, and mouse and human dosimetry calculations. microSPECT/CT imaging showed that a humanized antibody that targets "free" melanin in the tumor microenvironment had high tumor uptake in B16F10 murine melanoma in C57Bl/6 mice, with little to no uptake in naturally melanized tissues.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) accounts for >90% of pancreatic malignancies, and has median survival of <6 months. There is an urgent need for diagnostic and therapeutic options for PDAC. Centrin1 (CETN1) is a novel member of Cancer/Testis Antigens, with a 25-fold increase of CETN1 gene expression in PDX from PDAC patients.

View Article and Find Full Text PDF

(1) Background: Monoclonal antibodies are used in the treatment of multiple conditions including cancer, autoimmune disorders, and infectious diseases. One of the initial steps in the selection of an antibody candidate for further pre-clinical development is determining its pharmacokinetics in small animal models. The use of mass spectrometry and other techniques to determine the fate of these antibodies is laborious and expensive.

View Article and Find Full Text PDF

Radioimmunotherapy offers an effective way to direct ionizing radiation to cancer cells through attachment of radionuclides to antibodies while limiting negative effects of off-target irradiation. This, however, requires effective facile methods for attachment of therapeutic radionuclides onto antibodies. Herein, the authors report their efforts in evaluating N-succinimidyl S-acetylthioacetate (SATA), a commercially available reagent, for use as a bifunctional chelating agent (BCA) to attach Rhenium (Re) onto h8C3, a humanized IgG antibody that can effectively target extracellular melanin present in malignant melanoma.

View Article and Find Full Text PDF

There is a need for novel and effective prophylactic treatments and radioprotective materials to protect civilians and military personnel from ionizing radiation in contaminated environments. Melanin, a naturally occurring, ubiquitous pigment, has been shown to confer radioresistance, acting as a potential radioprotective agent. We have demonstrated that melanized Cryptococcus neoformans (CN) cells had improved survival post ionizing irradiation than non-melanized ones.

View Article and Find Full Text PDF

Melanins are ubiquitous in nature but their biological activities and functions have been difficult to discern. Conventional approaches to determine material function start by resolving structure and then characterize relevant properties. These approaches have been less successful for melanins because of their complex structure and insolubility, and because their relevant properties are not readily characterized by conventional methods.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae Forkhead Box (Fox) orthologs, Forkheads (Fkh) 1 and 2, are conserved transcription factors required for stress response, cell cycle progression and longevity. These yeast proteins play a key role in mitotic progression through activation of the ubiquitin E3 ligase Anaphase Promoting Complex (APC) via transcriptional control. Here, we used genetic and molecular analyses to demonstrate that the APC E3 activity is necessary for mitotic Fkh1 protein degradation and subsequent cell cycle progression.

View Article and Find Full Text PDF

Genomic stability, stress response, and nutrient signaling all play critical, evolutionarily conserved roles in lifespan determination. However, the molecular mechanisms coordinating these processes with longevity remain unresolved. Here we investigate the involvement of the yeast anaphase promoting complex (APC) in longevity.

View Article and Find Full Text PDF

Forkhead box O (FOXO) transcription factors have a conserved function in regulating metazoan lifespan. A key function in this process involves the regulation of the cell cycle and stress responses including free radical scavenging. We employed yeast chronological and replicative lifespan assays, as well as oxidative stress assays, to explore the potential evolutionary conservation of function between the FOXOs and the yeast forkhead box transcription factors FKH1 and FKH2.

View Article and Find Full Text PDF

Background: Histone post-translational modifications are critical for gene expression and cell viability. A broad spectrum of histone lysine residues have been identified in yeast that are targeted by a variety of modifying enzymes. However, the regulation and interaction of these enzymes remains relatively uncharacterized.

View Article and Find Full Text PDF

The anaphase-promoting complex (APC), a large evolutionarily conserved ubiquitin ligase complex, regulates cell cycle progression through mitosis and G(1). Here, we present data suggesting that APC-dependent cell cycle progression relies on a specific set of posttranslational histone-modifying enzymes. Multiple APC subunit mutants were impaired in total and modified histone H3 protein content.

View Article and Find Full Text PDF