Publications by authors named "Mackenzie L Hagan"

Article Synopsis
  • High mechanical loading induces temporary disruptions in cell membranes (PMD) that initiate a process called mechanotransduction, which is essential for bone adaptation.
  • The study hypothesized that disrupting a protein called β2-spectrin (Sptbn1), which supports cell structure, would increase membrane fragility, leading to altered responses in osteocytes (bone cells) under mechanical stress.
  • Results showed that disrupting Sptbn1 led to more PMD formation and slower repair rates in cells, impaired cell survival, and reduced bone thickening in response to mechanical loading, highlighting Sptbn1's crucial role in bone adaptation and cell response to stress.
View Article and Find Full Text PDF

We and others have seen that osteocytes sense high-impact osteogenic mechanical loading via transient plasma membrane disruptions (PMDs) which initiate downstream mechanotransduction. However, a PMD must be repaired for the cell to survive this wounding event. Previous work suggested that the protein Prkd1 (also known as PKCμ) may be a critical component of this PMD repair process, but the specific role of Prkd1 in osteocyte mechanobiology had not yet been tested.

View Article and Find Full Text PDF

The epidermal growth factor receptor (EGFR) is commonly upregulated in multiple cancer types, including breast cancer. In the present study, evidence is provided in support of the premise that upregulation of the EGFR/MEK1/MAPK1/2 signaling axis during antiestrogen treatment facilitates the escape of breast cancer cells from BimEL‑dependent apoptosis, conferring resistance to therapy. This conclusion is based on the findings that ectopic BimEL cDNA overexpression and confocal imaging studies confirm the pro‑apoptotic role of BimEL in ERα expressing breast cancer cells and that upregulated EGFR/MEK1/MAPK1/2 signaling blocks BimEL pro‑apoptotic action in an antiestrogen‑resistant breast cancer cell model.

View Article and Find Full Text PDF

Mammalian cells employ an array of biological mechanisms to detect and respond to mechanical loading in their environment. One such mechanism is the formation of plasma membrane disruptions (PMD), which foster a molecular flux across cell membranes that promotes tissue adaptation. Repair of PMD through an orchestrated activity of molecular machinery is critical for cell survival, and the rate of PMD repair can affect downstream cellular signaling.

View Article and Find Full Text PDF

Transient plasma membrane disruptions (PMD) occur in osteocytes with in vitro and in vivo loading, initiating mechanotransduction. The goal here was to determine whether osteocyte PMD formation or repair is affected by aging. Osteocytes from old (24 months) mice developed fewer PMD (-76% females, -54% males) from fluid shear than young (3 months) mice, and old mice developed fewer osteocyte PMD (-51%) during treadmill running.

View Article and Find Full Text PDF

Osteocytes experience plasma membrane disruptions (PMD) that initiate mechanotransduction both in vitro and in vivo in response to mechanical loading, suggesting that osteocytes use PMD to sense and adapt to mechanical stimuli. PMD repair is crucial for cell survival; antioxidants (e.g.

View Article and Find Full Text PDF

Osteocytes sense loading in bone, but their mechanosensation mechanisms remain poorly understood. Plasma membrane disruptions (PMD) develop with loading under physiological conditions in many cell types (e.g.

View Article and Find Full Text PDF