The covalent attachment of palmitate to proteins commonly occurs on cysteine residues near either N-myristoylated glycine residues or C-terminal farnesylated cysteine residues. It therefore seems likely that multiple palmitoyl-acyl transferase (PAT) activities exist to recognize and modify these distinct palmitoylation motifs. To evaluate this possibility, two synthetic peptides representing these palmitoylation motifs, termed MyrGCK(NBD) and FarnCNRas(NBD), were used to characterize PAT activity under a variety of conditions.
View Article and Find Full Text PDFAlthough protein palmitoylation is essential for targeting many important signaling proteins to the plasma membrane, the mechanism by which palmitoylation occurs is uncharacterized, since the enzyme(s) responsible for this modification remain unidentified. To study palmitoyl acyl transferase (PAT) activity, we developed an in vitro palmitoylation (IVP) assay using a fluorescently labeled substrate peptide, mimicking the N-terminal palmitoylation motif of proteins such as non-receptor Src-related tyrosine kinases. The palmitoylated and non-palmitoylated forms of the peptide were resolved by reverse-phase HPLC and detected by fluorescence.
View Article and Find Full Text PDF