Publications by authors named "Mack D Miller"

Background: Studies of nonhuman primates with exposures of up to 100 days of cocaine self-administration (SA) have provided evidence that the central effects of cocaine progress over time. These durations of cocaine exposure, however, may be insufficient to capture the extent of the neurobiological alterations observed in cocaine users, many of whom use the drug for years. The goal of the present study was to determine whether 1.

View Article and Find Full Text PDF

The delivery of cell therapies may be an important frontier to treat different respiratory diseases in the near future. However, the cell size, delivery conditions, cell viability, and effect in the pulmonary function are critical factors. We performed a proof-of-concept experiment using lungs and novel subglottic airway device that allows for selective lobar isolation and administration of drugs and biologics in liquid solution deep into the lung tissues, while simultaneously ventilating the rest of the lung lobes.

View Article and Find Full Text PDF

Previous studies in humans and in animals have shown dramatic effects of cocaine on measures of brain function that persist into abstinence. The purpose of this study was to examine the neurobiological consequences of abstinence from cocaine, using a model that removes the potential confound of cocaine cues. Adult male rhesus monkeys self-administered cocaine (0.

View Article and Find Full Text PDF

Phenmetrazine (PHEN) is a putative treatment for cocaine and psychostimulant recidivism; however, neurochemical changes underlying its activity have not been fully elucidated. We sought to characterize brain homeostatic adaptations to chronic PHEN, specifically on functional brain activity (local cerebral glucose utilization), G-Protein Coupled Receptor-stimulated G-protein activation, and phosphorylation of ERK1/2, GSK3β, and DARPP-32. Male Sprague-Dawley rats were implanted with sub-cutaneous minipumps delivering either saline (vehicle), acute (2-day) or chronic (14-day) low dose (25 mg/kg/day) or high dose (50 mg/kg/day) PHEN.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on understanding how environmental cues associated with cocaine use trigger cravings and relapse, using an animal model to explore dopamine's role in this process.
  • The research involved adult male rhesus monkeys self-administering cocaine while their brain activity was monitored through PET scans, comparing responses during cocaine-related cues to those during non-drug situations.
  • The findings indicated that specific brain regions were activated during cue exposure, correlating with earlier dopamine transporter levels, highlighting potential biomarkers for developing treatment strategies for cocaine addiction.
View Article and Find Full Text PDF

Movement disturbances are often overlooked consequences of chronic cocaine abuse. The purpose of this study was to systematically investigate sensorimotor performance in chronic cocaine users and characterize changes in brain activity among movement-related regions of interest (ROIs) in these users. Functional magnetic resonance imaging data were collected from 14 chronic cocaine users and 15 age- and gender-matched controls.

View Article and Find Full Text PDF

Because most human studies of the neurobiological substrates of the effects of cocaine have been performed with drug-dependent subjects, little information is available about the effects of cocaine in the initial phases of drug use before neuroadaptations to chronic exposure have developed. The purpose of the present study, therefore, was to define the substrates that mediate the initial effects of cocaine in a nonhuman primate model of cocaine self-administration using the 2-[14C]deoxyglucose method. Rhesus monkeys were trained to self-administer 0.

View Article and Find Full Text PDF

Recent reports have demonstrated that Delta(9)-tetrahydrocannabinol (Delta(9)-THC) stimulates locomotor activity at low doses (<2.5 mg/kg), while higher doses (>2.5 mg/kg) produce decreases in spontaneous activity.

View Article and Find Full Text PDF