Melanoma is the deadliest form of skin cancer, and early detection is crucial for patient survival. Computer systems can assist in melanoma detection, but are not widespread in clinical practice. In 2016, an open challenge in classification of dermoscopic images of skin lesions was announced.
View Article and Find Full Text PDFCommercially available clinical decision support systems (CDSSs) for skin cancer have been designed for the detection of melanoma only. Correct use of the systems requires expert knowledge, hampering their utility for nonexperts. Furthermore, there are no systems to detect other common skin cancer types, that is, nonmelanoma skin cancer (NMSC).
View Article and Find Full Text PDFBackground: It is often difficult to differentiate early melanomas from benign melanocytic nevi even by expert dermatologists, and the task is even more challenging for primary care physicians untrained in dermatology and dermoscopy. A computer system can provide an objective and quantitative evaluation of skin lesions, reducing subjectivity in the diagnosis.
Objective: Our objective is to make a low-cost computer aided diagnostic tool applicable in primary care based on a consumer grade camera with attached dermatoscope, and compare its performance to that of experienced dermatologists.
Int J Biomed Imaging
November 2011
Accurate detection of the borders of skin lesions is a vital first step for computer aided diagnostic systems. This paper presents a novel automatic approach to segmentation of skin lesions that is particularly suitable for analysis of dermoscopic images. Assumptions about the image acquisition, in particular, the approximate location and color, are used to derive an automatic rule to select small seed regions, likely to correspond to samples of skin and the lesion of interest.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2011
We present a technique for automatic diagnosis of malignant melanoma based exclusively on local pattern analysis. The technique relies on local binary patterns in small sections in the image, and automatically selects the relevant texture features from those that discriminate best between benign and malignant skin lesions. The classification is performed using support vector machines, and the feature vectors are clustered using K-means clustering.
View Article and Find Full Text PDF