Publications by authors named "Maciej Wolczyk"

Although modern generative models achieve excellent quality in a variety of tasks, they often lack the essential ability to generate examples with requested properties, such as the age of the person in the photo or the weight of the generated molecule. To overcome these limitations we propose PluGeN (Plugin Generative Network), a simple yet effective generative technique that can be used as a plugin for pre-trained generative models. The idea behind our approach is to transform the entangled latent representation using a flow-based module into a multi-dimensional space where the values of each attribute are modeled as an independent one-dimensional distribution.

View Article and Find Full Text PDF

The problem of reducing processing time of large deep learning models is a fundamental challenge in many real-world applications. Early exit methods strive towards this goal by attaching additional Internal Classifiers (ICs) to intermediate layers of a neural network. ICs can quickly return predictions for easy examples and, as a result, reduce the average inference time of the whole model.

View Article and Find Full Text PDF

We propose a semi-supervised generative model, SeGMA, which learns a joint probability distribution of data and their classes and is implemented in a typical Wasserstein autoencoder framework. We choose a mixture of Gaussians as a target distribution in latent space, which provides a natural splitting of data into clusters. To connect Gaussian components with correct classes, we use a small amount of labeled data and a Gaussian classifier induced by the target distribution.

View Article and Find Full Text PDF