Publications by authors named "Maciej Trusiak"

Optimization-based phase retrieval method for digital lensless holographic microscopy in the double-plane recording configuration is proposed. In our method the phase retrieval is framed as an optimization problem that can be efficiently and rigorously tackled with gradient decent tools. This is done with the conjugate gradient method that possesses excellent theoretical features such as global and fast convergence (compared to steepest descent) and relatively low computational cost (compared to second order optimizers).

View Article and Find Full Text PDF
Article Synopsis
  • Large field-of-view (FOV) microscopic imaging is crucial in biomedicine, particularly in label-free techniques like lensless digital holographic microscopy (LDHM), which offers high resolution but faces challenges in accurate quantitative phase imaging (QPI).
  • The research uses two-photon polymerization (TPP) to create widefield phase test targets, enabling the assessment of LDHM's imaging errors across the entire large FOV under various conditions.
  • Results showed that there are minimal phase value differences (under 12%) near the detector's edges, highlighting the need for new design approaches in photonic manufacturing to improve large-area lensless imaging accuracy.
View Article and Find Full Text PDF

Unlabelled: Computational methods have been established as cornerstones in optical imaging and holography in recent years. Every year, the dependence of optical imaging and holography on computational methods is increasing significantly to the extent that optical methods and components are being completely and efficiently replaced with computational methods at low cost. This roadmap reviews the current scenario in four major areas namely incoherent digital holography, quantitative phase imaging, imaging through scattering layers, and super-resolution imaging.

View Article and Find Full Text PDF

Current low coherence quantitative phase microscopy (LC-QPM) systems suffer from either reduced field of view (FoV) or reduced temporal resolution due to the short temporal coherence (TC) length of the light source. Here, we propose a hybrid, experimental and numerical approach to address this core problem associated with LC-QPM. We demonstrate high spatial resolution and high phase sensitivity in LC-QPM at high temporal resolution.

View Article and Find Full Text PDF

Digital in-line holographic microscopy (DIHM) enables efficient and cost-effective computational quantitative phase imaging with a large field of view, making it valuable for studying cell motility, migration, and bio-microfluidics. However, the quality of DIHM reconstructions is compromised by twin-image noise, posing a significant challenge. Conventional methods for mitigating this noise involve complex hardware setups or time-consuming algorithms with often limited effectiveness.

View Article and Find Full Text PDF

Quantitative phase microscopy (QPM) is often based on recording an object-reference interference pattern and its further phase demodulation. We propose pseudo Hilbert phase microscopy (PHPM) where we combine pseudo thermal light source illumination and Hilbert spiral transform (HST) phase demodulation to achieve hybrid hardware-software-driven noise robustness and an increase in resolution of single-shot coherent QPM. Those advantageous features stem from physically altering the laser spatial coherence and numerically restoring spectrally overlapped object spatial frequencies.

View Article and Find Full Text PDF

Phase imaging microscopy under Gabor regime has been recently reported as an extremely simple, low cost and compact way to update a standard bright-field microscope with coherent sensing capabilities. By inserting coherent illumination in the microscope embodiment and producing a small defocus distance of the sample at the input plane, the digital sensor records an in-line Gabor hologram of the target sample, which is then numerically post-processed to finally achieve the sample's quantitative phase information. However, the retrieved phase distribution is affected by the two well-known drawbacks when dealing with Gabor's regime, that is, coherent noise and twin image disturbances.

View Article and Find Full Text PDF
Article Synopsis
  • Exposure to laser light can negatively affect the examination of cell cultures with holographic imaging techniques, leading researchers to seek alternatives like using lower intensity and broader spectrum light.
  • The study focuses on lensless digital holographic microscopy (LDHM) operating under low photon budget (LPB) conditions, which allows for effective imaging of live cells while minimizing sample interaction.
  • Results show that even with low illumination power (down to 7 µW), the quality of holographic imaging remains high, supported by numerical denoising techniques, and successfully demonstrated on complex biological samples like live glial restricted progenitor cells.
View Article and Find Full Text PDF

Laser-based lensless digital holographic microscopy (LDHM) is often spoiled by considerable coherent noise factor. We propose a novel LDHM method with significantly limited coherent artifacts, e.g.

View Article and Find Full Text PDF

Fringe pattern based measurement techniques are the state-of-the-art in full-field optical metrology. They are crucial both in macroscale, e.g.

View Article and Find Full Text PDF

We present the numerical analysis of the effect of the temporarily partially coherent illumination on the phase measurement accuracy in digital holography microscopy (DHM) and optical diffraction tomography (ODT), as reconstruction algorithms tend to assume purely monochromatic conditions. In the regime of reduced temporal coherence, we simulate the hologram formation in two different optical setups, representing classical off-axis two-beam and grating common-path configurations. We consider two ODT variants: with sample rotation and angle-scanning of illumination.

View Article and Find Full Text PDF

Building on Gabor seminal principle, digital in-line holographic microscopy provides efficient means for space-time investigations of large volumes of interest. Thus, it has a pivotal impact on particle tracking that is crucial in advancing various branches of science and technology, e.g.

View Article and Find Full Text PDF

We propose a speed-up method for the in-focus plane detection in digital holographic microscopy that can be applied to a broad class of autofocusing algorithms that involve repetitive propagation of an object wave to various axial locations to decide the in-focus position. The classical autofocusing algorithms apply a uniform search strategy, i.e.

View Article and Find Full Text PDF

Fringe pattern analysis is the central aspect of numerous optical measurement methods, e.g., interferometry, fringe projection, digital holography, quantitative phase microscopy.

View Article and Find Full Text PDF

In this work we propose an open-top like common-path intrinsically achromatic optical diffraction tomography system. It operates as a total-shear interferometer and employs Ronchi-type amplitude diffraction grating, positioned in between the camera and the tube lens without an additional 4f system, generating three-beam interferograms with achromatic second harmonic. Such configuration makes the proposed system low cost, compact and immune to vibrations.

View Article and Find Full Text PDF

Conditions of the digital recording of the fringe pattern determine the phase reconstruction procedure, which in turn directly shapes the final accuracy and throughput of the full-field (non-scanning) optical measurement technique and defines the system capabilities. In this way, the fringe pattern analysis plays a crucial role in the ubiquitous optical measurements and thus is under constant development focused on high temporal/spatial resolution. It is especially valuable in the quantitative phase imaging technology, which emerged in the high-contrast label-free biomedical microscopy.

View Article and Find Full Text PDF

Summary: Fourier ptychographic microscopy (FPM) is a computational microscopy technique that enables large field of view and high-resolution microscopic imaging of biological samples. However, the FPM does not yet have an adequately capable open-source software. In order to fill this gap we are presenting novel, simple, universal, semi-automatic and highly intuitive graphical user interface (GUI) open-source application called the FPM app enabling wide-scale robust FPM reconstruction.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Utilizing the refractive index as the endogenous contrast agent to noninvasively study transparent cells is a working principle of emerging quantitative phase imaging (QPI). In this contribution, we propose the Variational Hilbert Quantitative Phase Imaging (VHQPI)-end-to-end purely computational add-on module able to improve performance of a QPI-unit without hardware modifications. The VHQPI, deploying unique merger of tailored variational image decomposition and enhanced Hilbert spiral transform, adaptively provides high quality map of sample-induced phase delay, accepting particularly wide range of input single-shot interferograms (from off-axis to quasi on-axis configurations).

View Article and Find Full Text PDF

Interference microscopy is a powerful optical imaging technique providing quantitative phase distribution information to characterize various type technical and biomedical objects. Static and dynamic objects and processes can be investigated. In this paper we propose very compact, common-path and partially coherent diffraction grating-based interference microscopy system for studying small objects like single cells with low densities being sparsely distributed in the field of view.

View Article and Find Full Text PDF

Fringe patterns encode the information about the result of a measurement performed via widely used optical full-field testing methods, e.g., interferometry, digital holographic microscopy, moiré techniques, structured illumination etc.

View Article and Find Full Text PDF

Full-field vibration testing is indispensable in characterization of micro-electro-mechanical components. Time-averaged interference (TAI) microscopy is a very capable and accurate vibration profilometry technique. It employs natural all-optical multiplexing of required information, i.

View Article and Find Full Text PDF

The multi-frequency temporal phase unwrapping (MF-TPU) method, as a classical phase unwrapping algorithm for fringe projection techniques, has the ability to eliminate the phase ambiguities even while measuring spatially isolated scenes or the objects with discontinuous surfaces. For the simplest and most efficient case in MF-TPU, two groups of phase-shifting fringe patterns with different frequencies are used: the high-frequency one is applied for 3D reconstruction of the tested object and the unit-frequency one is used to assist phase unwrapping for the wrapped phase with high frequency. The final measurement precision or sensitivity is determined by the number of fringes used within the high-frequency pattern, under the precondition that its absolute phase can be successfully recovered without any fringe order errors.

View Article and Find Full Text PDF

In stimulated emission depletion (STED) nanoscopy, the major origin of decreased signal-to-noise ratio within images can be attributed to sample photobleaching and strong optical aberrations. This is due to STED utilizing a high-power depletion laser (increasing the risk of photodamage), while the depletion beam is very sensitive to sample-induced aberrations. Here, we demonstrate a custom-built STED microscope with automated aberration correction that is capable of 3D super-resolution imaging through thick, highly aberrating tissue.

View Article and Find Full Text PDF

Single-shot, two-frame, π-shifted spatially multiplexed interference microscopy (π-SMIM) is presented as an improvement to previous SMIM implementations, introducing a versatile, robust, fast, and accurate method for cumbersome, noisy, and low-contrast phase object analysis. The proposed π-SMIM equips a commercially available nonholographic microscope with a high-speed (video frame rate) enhanced quantitative phase imaging (QPI) capability by properly placing a beam-splitter in the microscope embodiment to simultaneously (in a single shot) record two holograms mutually phase shifted by π radians at the expense of reducing the field of view. Upon subsequent subtractive superimposition of holograms, a π-hologram is generated with reduced background and improved modulation of interference fringes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionh7fmn00g03a8f0mov3g26vt9enfgg5np): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once