The synthesis of transition metal oxide nanostructures, thanks to their high surface-to-volume ratio and the resulting large fraction of surface atoms with high catalytic activity, is of prime importance for the development of new sensors and catalytic materials. Here, we report an economical, time-efficient, and easily scalable method of fabricating nanowires composed of vanadium, chromium, manganese, iron, and cobalt oxides by employing simultaneous block copolymer (BCP) self-assembly and selective sequestration of metal-organic acetylacetonate complexes within one of the BCP blocks. We discuss the mechanism and the primary factors that are responsible for the sequestration and conformal replication of the BCP template by the inorganic material that is obtained after the polymer template is removed.
View Article and Find Full Text PDFThe construction of an efficient conductive interface between electrodes and electroactive proteins is a major challenge in the biosensor and bioelectrochemistry fields to achieve the desired nanodevice performance. Concomitantly, metallo-organic terpyridine wires have been extensively studied for their great ability to mediate electron transfer over a long-range distance. In this study, we report a novel stepwise bottom-up approach for assembling bioelectrodes based on a genetically modified model electroactive protein, cytochrome c553 (cyt c553) and an organometallic terpyridine (TPY) molecular wire self-assembled monolayer (SAM).
View Article and Find Full Text PDFAccording to our original discovery, the oscillatory course of the Cu(2+)-catalyzed oxidation of thiocyanate ions with hydrogen peroxide, in nonstirred medium and upon the addition of luminol as an indicator, can be a source of a novel type of dissipative patterns--luminescent traveling waves. The formation of these fronts, contrary to the patterns associated with the Belousov-Zhabotinsky reaction, cannot be explained in terms of coupled homogeneous kinetics and diffusion, and under isothermal conditions. Both experimental studies and numerical simulations of the kinetic mechanism suggest that the spatial progress of these waves requires mainly the temperature gradient in the solution, which affects the local chemical reaction rate (and thus the oscillation period), with practically negligible contribution from diffusion of reagents.
View Article and Find Full Text PDF