The global increase in mobile technology usage has created a need for better energy storage systems. With standard batteries reaching their technological limits, alternate energy storage methods are gaining momentum. In this study, we demonstrate a cheap and efficient way of building from scratch high-performance supercapacitors based on graphene oxide (GO) functionalized with tetrapyrrole derivatives: porphyrins and phthalocyanines.
View Article and Find Full Text PDFWe present results showing the capability of concrete-based information processing substrate in the signal classification task in accordance with computing paradigm. As the Reservoir Computing is a suitable model for describing embedded computation, we propose that this type of presented basic construction unit can be used as a source for "reservoir of states" necessary for simple tuning of the readout layer. We present an electrical characterization of the set of samples with different additive concentrations followed by a dynamical analysis of selected specimens showing fingerprints of memfractive properties.
View Article and Find Full Text PDFA better control over processes responsible for the photocurrent generation in semiconductors and nanocomposites is essential in the fabrication of photovoltaic devices, efficient photocatalysts and optoelectronic elements. Therefore, new approaches towards photochemical properties tuning are intensively searched for. Among numerous parameters, the photocurrent polarity is of great importance to the overall performance of a device.
View Article and Find Full Text PDFGraphene oxide (GO) was modified by two modified porphyrins (THPP and TCPP) to form GO⁻porphyrin hybrids. Spectroscopic measurements demonstrated the formation of stable supramolecular aggregates when mixing two components in solution. The Fourier transform infrared (FTIR) and Raman scattering measurements confirm π-stacking between hydrophobic regions of GO nanoflakes and porphyrin molecules.
View Article and Find Full Text PDFThis review focuses on the synthesis, properties and selected applications of heavy pnictogen chalcohalides, i.e. compounds of the MQX stoichiometry, where M = As, Sb, and Bi; Q = O, S, Se, and Te; and X = F, Cl, Br and I.
View Article and Find Full Text PDF