Heterostructures (HSs) formed by the transition-metal dichalcogenide materials have shown great promise in next-generation (opto)electronic applications. An artificially twisted HS allows us to manipulate the optical and electronic properties. In this work, we introduce the understanding of the energy transfer (ET) process governed by the dipolar interaction in a twisted molybdenum diselenide (MoSe) homobilayer any charge-blocking interlayer.
View Article and Find Full Text PDFWe investigate the vibrational and magnetic properties of thin layers of chromium tribromide (CrBr) with a thickness ranging from three to twenty layers (3-20 L) revealed by the Raman scattering (RS) technique. Systematic dependence of the RS process efficiency on the energy of the laser excitation is explored for four different excitation energies: 1.96 eV, 2.
View Article and Find Full Text PDFMoiré excitons (MXs) are electron-hole pairs localised by the periodic (moiré) potential forming in two-dimensional heterostructures (HSs). MXs can be exploited, e.g.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2023
The isolation of graphene opened the gate to investigate a vast family of two-dimensional (2D) layered materials [...
View Article and Find Full Text PDFModulation-doped CdTe quantum wells (QWs) with CdMgTe barriers were studied by photoluminescence (PL) and far-infrared Fourier spectroscopy under a magnetic field at 4.2 K and by Raman spectroscopy at room temperature. Two samples were tested: a sample which contained ten QWs (MQW) and a sample with one QW (SQW).
View Article and Find Full Text PDFTo fully explore exciton-based applications and improve their performance, it is essential to understand the exciton behavior in anisotropic materials. Here, we investigate the optical properties of anisotropic excitons in GeS encapsulated by h-BN using different approaches that combine polarization- and temperature-dependent photoluminescence (PL) measurements, calculations, and effective mass approximation (EMA). Using the Bethe-Salpeter Equation (BSE) method, we found that the optical absorption spectra in GeS are significantly affected by the Coulomb interaction included in the BSE method, which shows the importance of excitonic effects besides it exhibits a significant dependence on the direction of polarization, revealing the anisotropic nature of bulk GeS.
View Article and Find Full Text PDFHigh light absorption (∼15%) and strong photoluminescence (PL) emission in monolayer (1L) transition metal dichalcogenides (TMDs) make them ideal candidates for optoelectronic device applications. Competing interlayer charge transfer (CT) and energy transfer (ET) processes control the photocarrier relaxation pathways in TMD heterostructures (HSs). In TMDs, long-distance ET can survive up to several tens of nm, unlike the CT process.
View Article and Find Full Text PDFRaman scattering (RS) in bulk hafnium disulfide (HfS2) is investigated as a function of temperature (5 K - 350 K) with polarization resolution and excitation of several laser energies. An unexpected temperature dependence of the energies of the main Raman-active (A1gand E) modes with the temperature-induced blueshift in the low-temperature limit is observed. The low-temperature quenching of a mode(134 cm) and the emergence of a new mode at approx.
View Article and Find Full Text PDFMoiré superlattices, the artificial quantum materials, have provided a wide range of possibilities for the exploration of completely new physics and device architectures. In this Review, we focus on the recent progress on emerging moiré photonics and optoelectronics, including but not limited to moiré excitons, trions, and polaritons; resonantly hybridized excitons; reconstructed collective excitations; strong mid- and far-infrared photoresponses; terahertz single-photon detection; and symmetry-breaking optoelectronics. We also discuss the future opportunities and research directions in this field, such as developing advanced techniques to probe the emergent photonics and optoelectronics in an individual moiré supercell; exploring new ferroelectric, magnetic, and multiferroic moiré systems; and using external degrees of freedom to engineer moiré properties for exciting physics and potential technological innovations.
View Article and Find Full Text PDFThe temperature evolution of the resonant Raman scattering from high-quality bilayer 2H-MoS[Formula: see text] encapsulated in hexagonal BN flakes is presented. The observed resonant Raman scattering spectrum as initiated by the laser energy of 1.96 eV, close to the A excitonic resonance, shows rich and distinct vibrational features that are otherwise not observed in non-resonant scattering.
View Article and Find Full Text PDFApplications of two-dimensional (2D) perovskites have significantly outpaced the understanding of many fundamental aspects of their photophysics. The optical response of 2D lead halide perovskites is dominated by strongly bound excitonic states. However, a comprehensive experimental verification of the exciton fine structure splitting and associated transition symmetries remains elusive.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2021
The optical response of bulk germanium sulfide (GeS) is investigated systematically using different polarization-resolved experimental techniques, such as photoluminescence (PL), reflectance contrast (RC), and Raman scattering (RS). It is shown that while the low-temperature ( = 5 K) optical band-gap absorption is governed by a single resonance related to the neutral exciton, the corresponding emission is dominated by the disorder/impurity- and/or phonon-assisted recombination processes. Both the RC and PL spectra are found to be linearly polarized along the armchair direction.
View Article and Find Full Text PDFAtomically thin materials, like semiconducting transition metal dichalcogenides, are highly sensitive to the environment. This opens up an opportunity to externally control their properties by changing their surroundings. In this work, high-quality van der Waals heterostructures assembled from hBN-encapsulated monolayer MoS are studied with the aid of photoluminescence, photoluminescence excitation, and reflectance contrast experiments.
View Article and Find Full Text PDFWe investigate the origin of emission lines apparent in the low-temperature photoluminescence spectra of n-doped WS monolayer embedded in hexagonal BN layers using external magnetic fields and first-principles calculations. Apart from the neutral A exciton line, all observed emission lines are related to the negatively charged excitons. Consequently, we identify emissions due to both the bright (singlet and triplet) and dark (spin- and momentum-forbidden) negative trions as well as the phonon replicas of the latter optically inactive complexes.
View Article and Find Full Text PDFThe spectral signatures associated with different negatively charged exciton complexes (trions) in a WS2 monolayer encapsulated in hBN are analyzed from low temperature and polarization resolved reflectance contrast (RC) and photoluminescence (PL) experiments, with an applied magnetic field. Based on results obtained from the RC experiment, we show that the valley Zeeman effect affects the optical response of both the singlet and the triplet trion species through the evolution of their energy and of their relative intensity, when applying an external magnetic field. Our analysis allows us to estimate a free electron concentration of ∼1.
View Article and Find Full Text PDFAn Amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFMonolayer transition metal dichalcogenides, known for exhibiting strong excitonic resonances, constitute a very interesting and versatile platform for the investigation of light-matter interactions. In this work, we report on a strong coupling regime between excitons in monolayer WSe2 and photons confined in an open, voltage-tunable dielectric microcavity. The tunability of our system allows us to extend the exciton-polariton state over a wide energy range and, in particular, to bring the excitonic component of the lower polariton mode into resonance with other excitonic transitions in monolayer WSe2.
View Article and Find Full Text PDFAtomically thin layers of two-dimensional materials can be assembled in vertical stacks that are held together by relatively weak van der Waals forces, enabling coupling between monolayer crystals with incommensurate lattices and arbitrary mutual rotation. Consequently, an overarching periodicity emerges in the local atomic registry of the constituent crystal structures, which is known as a moiré superlattice. In graphene/hexagonal boron nitride structures, the presence of a moiré superlattice can lead to the observation of electronic minibands, whereas in twisted graphene bilayers its effects are enhanced by interlayer resonant conditions, resulting in a superconductor-insulator transition at magic twist angles.
View Article and Find Full Text PDFThe effect of bis(trifluoromethane) sulfonimide (TFSI, superacid) treatment on the optical properties of MoS monolayers is investigated by means of photoluminescence, reflectance contrast and Raman scattering spectroscopy employed in a broad temperature range. It is shown that when applied multiple times, the treatment results in progressive quenching of the trion emission/absorption and in the redshift of the neutral exciton emission/absorption associated with both the A and B excitonic resonances. Based on this evolution, a trion complex related to the B exciton in monolayer MoS is unambiguously identified.
View Article and Find Full Text PDFRecently, spatially indirect ("interlayer") excitons have been discovered in bulk 2H-MoTe2. They are theoretically predicted to exist in other Mo-based transition metal dichalcogenides (TMDCs) and are expected to be present in W-based TMDCs as well. We investigate interlayer excitons (XIL) in bulk 2H-MoSe2 and 2H-WSe2 using valley-resolved magneto-reflectance spectroscopy under high magnetic fields of up to 29 T combined with ab initio GW-BSE calculations.
View Article and Find Full Text PDFIn semiconductor quantum-wire heterostructures, interface roughness leads to exciton localization and to a radiative decay rate much smaller than that expected for structures with flat interfaces. Here, we uncover the electronic and optical properties of the one-dimensional extended defects that form at the intersection between stacking faults and inversion domain boundaries in GaN nanowires. We show that they act as crystal-phase quantum wires, a novel one-dimensional quantum system with atomically flat interfaces.
View Article and Find Full Text PDF