Publications by authors named "Maciej Paszewski"

We present a new method to incorporate hydrophilic charged nanoparticles into the lyotropic liquid crystal (LLC) template. This method is based on the effect of the polymer-induced phase separation (PIPS) and consists of two steps. In the first step, the nanoparticles are mixed with a surfactant micellar solution.

View Article and Find Full Text PDF
Article Synopsis
  • Deformable spherical aggregates of metal nanoparticles connect through long-chain dithiol ligands to form macroscopic nanostructured materials that can be shaped and molded.
  • These materials can be thermally hardened into metal structures with adjustable porosity and maintain electrical conductivity in both their plastic and hardened forms.
  • The self-assembly technique is versatile, suitable for creating materials from pure metals as well as bimetallic compositions.
View Article and Find Full Text PDF

Photoswelling of thin films of dichromated gelatin provides a basis for fabrication of multilevel surface reliefs via sequential UV illumination through different photomasks. The remarkable feature of this simple, benchtop technique is that by adjusting irradiation times, film thickness, or its hydration state the heights of the developed features can be varied from few nanometers to tens of microns. After UV exposure, the surface structures can be replicated faithfully into either soft or hard PDMS stamps.

View Article and Find Full Text PDF

Electrostatic aggregation of oppositely charged silver and gold nanoparticles leads to the formation of core-shell clusters in which the shell is formed by the nanoparticles, which are in excess. Arguments based on Debye screening of interactions between like-charged particles help explain why these clusters are stable despite possessing net electric charge. The core-shell aggregates exhibit unusual optical properties with the resonance absorption of the shell particles enhanced by the particles in the core and that of the core suppressed by the shell.

View Article and Find Full Text PDF

Self-assembly of charged, equally sized metal nanoparticles of two types (gold and silver) leads to the formation of large, sphalerite (diamond-like) crystals, in which each nanoparticle has four oppositely charged neighbors. Formation of these non-close-packed structures is a consequence of electrostatic effects specific to the nanoscale, where the thickness of the screening layer is commensurate with the dimensions of the assembling objects. Because of electrostatic stabilization of larger crystallizing particles by smaller ones, better-quality crystals can be obtained from more polydisperse nanoparticle solutions.

View Article and Find Full Text PDF