A ruthenium-catalyzed transfer hydrogenation of olefins utilizing formic acid as a hydrogen donor is described. The application of commercially available alkylidene ruthenium complexes opens access to attractive C(sp3)-C(sp3) bond formation in an olefin metathesis/transfer hydrogenation sequence under tandem catalysis conditions. High chemoselectivity of the developed methodology provides a remarkable synthetic tool for the reduction of various functionalized alkenes under mild reaction conditions.
View Article and Find Full Text PDFWe have analyzed the effect of excess electron attachment on the network of hydrogen bonds in the oxalic acid dimer (OA). The most stable anionic structures may be viewed as complexes of a neutral hydrogenated moiety HOA˙ coordinated to an anionic deprotonated moiety (OA-H). HOA˙ acts as a double proton donor and (OA-H) as a double proton acceptor.
View Article and Find Full Text PDFComputational results have been reported for 2'-deoxycytidine (dC), its gas phase isomers, tautomers, and their conformers, as well as for the crystalline phase. In addition to the neutral gas phase molecules, we have also considered associated radical anions and cations. The structural calculations were performed at the density functional and MP2 levels of theory.
View Article and Find Full Text PDFAnion photoelectron spectroscopy (PES) and electron energy-loss spectroscopy (EELS) probe different regions of the anionic potential energy surface. These complementary techniques provided information about anionic states of acetoacetic acid (AA). Electronic structure calculations facilitated the identification of the most stable tautomers and conformers for both neutral and anionic AA and determined their relative stabilities and excess electron binding energies.
View Article and Find Full Text PDFOur experimental and computational results demonstrate an unusual electrophilicity of oxalic acid, the simplest dicarboxylic acid. The monomer is characterized by an adiabatic electron affinity and electron vertical detachment energy of 0.72 and 1.
View Article and Find Full Text PDFWe considered stability of the dimer of oxalic acid. The global minimum energy structure identified by us is stabilized by two inter- and four intramolecular hydrogen bonds, whereas the most stable structure identified in previous studies is supported by two inter- and three intramolecular hydrogen bonds. The latter structure proves to be less stable by 25 meV than the former.
View Article and Find Full Text PDFWe have developed a software tool for combinatorial generation of tautomers and conformers of small molecules. We have demonstrated it by performing a systematic search for the most stable structures of neutral and anionic phenylalanine (Phe) using electronic structure methods. For the neutral canonical tautomer we found out that the conformers with and without the intramolecular (O)H···NH2 hydrogen bond are similarly stable, within the error bars of our method.
View Article and Find Full Text PDFMolecular ions in the form of "pseudo-atoms" are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined one such property--the electronegativity--for the "pseudo-alkali metal" ammonium (NH(4)), and evaluated its reliability as a descriptor versus the electronegativities of the alkali metals. The computed properties of ammonium's binary complexes with astatine and of selected borohydrides confirm the similarity of NH(4) to the alkali metal atoms, although the electronegativity of NH(4) is relatively large in comparison to its cationic radius.
View Article and Find Full Text PDFEven a relatively small molecule with 10-20 atoms might have a few local minima, which correspond to different conformers. The number of local minima quickly increases with molecular size and the most common algorithms, driven by calculated forces, frequently identify a minimum, which is closest to the initial structure, rather than the most stable conformer. Here we discuss how to perform a systematic search of the conformational space for a chain-like molecule.
View Article and Find Full Text PDFThe photoelectron spectrum for (1-methylthymine)-(9-methyladenine)...
View Article and Find Full Text PDFThe H(NH(2)BH(2))(n)H oligomers are possible products from dehydrogenation of ammonia borane (NH(3)BH(3)) and ammonium borohydride (NH(4)BH(4)), which belong to a class of boron-nitrogen-hydrogen (BNH(x)) compounds that are promising materials for chemical hydrogen storage. Understanding the kinetics and reaction pathways of formation of these oligomers and their further dehydrogenation is essential for developing BNH(x)-based hydrogen storage materials. We have performed computational modeling using density functional theory (DFT), ab initio wave function theory, and Car-Parrinello molecular dynamics (CPMD) simulations on the energetics and formation pathways for the H(NH(2)BH(2))(n)H (n = 1-4) oligomers, polyaminoborane (PAB), from NH(3)BH(3) monomers and the subsequent dehydrogenation steps to form polyiminoborane (PIB).
View Article and Find Full Text PDFJ Comput Aided Mol Des
June 2010
Finding the most stable tautomer or a set of low-energy tautomers of molecules is critical in many aspects of molecular modelling or virtual screening experiments. Enumeration of low-energy tautomers of neutral molecules in the gas-phase or typical solvents can be performed by applying available organic chemistry knowledge. This kind of enumeration is implemented in a number of software packages and it is relatively reliable.
View Article and Find Full Text PDFChanges of electrostatic potential around the DNA molecule resulting from chemical modifications of nucleotides may play a role in enzymatic recognition of damaged sites. The electrostatic potential around the DNA fragments containing either the intact guanine-cytosine pair or 8-oxoguanine-cytosine or the guanine-abasic site was projected on a cylindrical surface around the double helix. The 2D maps of EP of intact and damaged DNA fragments were compared using image analysis methods.
View Article and Find Full Text PDFEnergies of different conformers of 22 amino acid molecules and their protonated and deprotonated species were calculated by some density functional theory (DFT; SVWN, B3LYP, B3PW91, MPWB1K, BHandHLYP) and wave function theory (WFT; HF, MP2) methods with the 6-311++G(d,p) basis set to obtain the relative conformer energies, vertical electron detachment energies, deprotonation energies, and proton affinities. Taking the CCSD/6-311++G(d,p) results as the references, the performances of the tested DFT and WFT methods for amino acids with various intramolecular hydrogen bonds were determined. The BHandHLYP method was the best overall performer among the tested DFT methods, and its accuracy was even better than that of the more expensive MP2 method.
View Article and Find Full Text PDFThe photoelectron spectrum (PES) of the uracil anion is reported and discussed from the perspective of quantum chemical calculations of the vertical detachment energies (VDEs) of the anions of various tautomers of uracil. The PES peak maximum is found at an electron binding energy of 2.4 eV, and the width of the main feature suggests that the parent anions are in a valence rather than a dipole-bound state.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2008
Anionic states of nucleic acid bases are suspected to play a role in the radiation damage processes of DNA. Our recent studies suggested that the excess electron attachment to the nucleic acid bases can stabilize some rare tautomers, i.e.
View Article and Find Full Text PDFJ Chem Theory Comput
May 2008
When plotting different orbitals with consistent contour values, one can create illusions about the relative extension of charge distributions. We suggest that the comparison is not biased when plots reproduce the same fraction of the total charge. We have developed an algorithm and software that facilitate this type of visualization.
View Article and Find Full Text PDFThe anionic and neutral complexes of glycine with water were studied at at the coupled cluster level of theory with single, double, and perturbative triple excitations. The most stable neutral complex has a relatively small dipole moment (1.74 D) and does not bind an electron.
View Article and Find Full Text PDFIn contrast to widely familiar acid-base behavior in solution, single molecules of NH3 and HCl do not react to form the ionic salt, NH+4Cl-, in isolation. We applied anion photoelectron spectroscopy and ab initio theory to investigate the interaction of an excess electron with the hydrogen-bonded complex NH3..
View Article and Find Full Text PDFChanges of electrostatic potential around the DNA molecule resulting from chemical modifications of nucleotides may play a role in enzymatic recognition of damaged sites. Effects of chemical modifications of nucleotides on the structure of DNA have been characterized through electronic structure computations. Quantum mechanical structural optimizations of fragments of five pairs of nucleotides with thymine or thymine glycol were performed at the density functional level of theory with a B3LYP exchange-correlation functional and 6-31G(d,p) basis sets.
View Article and Find Full Text PDFRecently, we reported the discovery of adiabatically bound anions of guanine that might be involved in the processes of DNA damage by low-energy electrons and in charge transfer through DNA. These anions correspond to some tautomers that have been ignored thus far. They were identified using a hybrid quantum mechanical-combinatorial approach in which an energy-based screening was performed on the library of 499 tautomers with their relative energies calculated with quantum chemistry methods.
View Article and Find Full Text PDFIt is believed that guanine, a basic component of DNA and RNA, has the smallest affinity to an excess electron among all nucleic acid bases. Our experimental and computational findings indicate, however, that many so far neglected tautomers of guanine support adiabatically bound anionic states in the gas phase. The computed values of electron vertical detachment energy for the most stable anionic tautomers are within a broad range of the dominant feature of the photoelectron spectrum.
View Article and Find Full Text PDFAnionic states of nucleic acid bases (NABs) are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated NAB parent anions probed mostly dipole-bound states, which are not present in condensed phase environments. Recently, we demonstrated that very rare tautomers of uracil (U), cytosine (C), adenine (A), and guanine (G), which are obtained from canonical tautomers through N-to-C proton transfers, support valence anionic states.
View Article and Find Full Text PDFWe describe a procedure of finding low-energy tautomers of a molecule. The procedure consists of (i) combinatorial generation of a library of tautomers, (ii) screening based on the results of geometry optimization of initial structures performed at the density functional level of theory, and (iii) final refinement of geometry for the top hits at the second-order Möller-Plesset level of theory followed by single-point energy calculations at the coupled cluster level of theory with single, double, and perturbative triple excitations. The library of initial structures of various tautomers is generated with TauTGen, a tautomer generator program.
View Article and Find Full Text PDFAnionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.
View Article and Find Full Text PDF