The combination of trimeric form of the light-harvesting complex II (LHCII), a porous graphite electrode (GE), and the application of phenyl-p-benzoquinone (PPBQ), the quinone derivative, allow the construction of a new type of biohybrid photoactive system. The Chl fluorescence decay and voltammetric analyzes revealed that PPBQ impacts LHCII proportionally to accessible quenching sites and that PPBQ forms redox complexes with Chl in both ground and excited states. As a result, photocurrent generation is directly dependent on PPBQ-induced quenching of Chl fluorescence.
View Article and Find Full Text PDFChondrocalcinosis is a metabolic disease caused by the presence of calcium pyrophosphate dihydrate crystals in the synovial fluid. The goal of our endeavor was to find out whether short peptides could be used as a dissolving factor for such crystals. In order to identify peptides able to dissolve crystals of calcium pyrophosphate, we screened through a random library of peptides using a phage display.
View Article and Find Full Text PDFSNF1-Related protein kinases Type 2 (SnRK2) are plant-specific enzymes widely distributed across the plant kingdom. They are key players controlling abscisic acid (ABA)-dependent and ABA-independent signaling pathways in the plant response to osmotic stress. Here we established that SnRK2.
View Article and Find Full Text PDFIn chloroplasts of land plants, the thylakoid network is organized into appressed regions called grana stacks and loosely arranged parallel stroma thylakoids. Many factors determining such intricate structural arrangements have been identified so far, including various thylakoid-embedded proteins, and polar lipids that build the thylakoid matrix. Although carotenoids are important components of proteins and the lipid phase of chloroplast membranes, their role in determining the thylakoid network structure remains elusive.
View Article and Find Full Text PDFAntarctic regions are characterized by low temperatures and strong UV radiation. This harsh environment is inhabited by psychrophilic and psychrotolerant organisms, which have developed several adaptive features. In this study, we analyzed two Antarctic bacterial strains, sp.
View Article and Find Full Text PDFBackground: Carotenoids are natural tetraterpene pigments widely utilized in the food, pharmaceutical and cosmetic industries. Currently, chemical synthesis of these compounds outperforms their production in Escherichia coli or yeast due to the limited efficiency of the latter. The use of natural microbial carotenoid producers, such as bacteria of the genus Paracoccus (Alphaproteobacteria), may help to optimize this process.
View Article and Find Full Text PDFAll life on Earth uses one universal biochemistry stemming from one universal common ancestor of all known living organisms. One of the most striking features of this universal biochemistry is its utter dependence on phosphate group transfer between biochemical molecules. Both nucleic acid and peptide biological synthesis relies heavily on phosphate group transfer.
View Article and Find Full Text PDFThylakoid membranes isolated from leaves of two plant species, the chilling tolerant (CT) pea and chilling sensitive (CS) runner bean, were assessed for the composition of lipids, carotenoids as well as for the arrangement of photosynthetic complexes. The response to stress conditions was investigated in dark-chilled and subsequently photo-activated detached leaves of pea and bean. Thylakoids of both species have a similar level of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), but different sulfoquinovosyldiacylglycerol to phosphatidylglycerol (PG) ratio.
View Article and Find Full Text PDFThe chloroplast thylakoid network is a dynamic structure which, through possible rearrangements, plays a crucial role in regulation of photosynthesis. Although the importance of the main components of the thylakoid membrane matrix, galactolipids, in the formation of the network of internal plastid membrane was found before, the structural role of monogalactosyldiacylglycerol (MGDG) and digalactosylidacylglycerol (DGDG) is still largely unknown. We elucidated detailed structural modifications of the thylakoid membrane system in Arabidopsis thaliana MGDG- and DGDG-deficient mutants.
View Article and Find Full Text PDFLight-dependent electrochemical properties of the light harvesting complexes of Photosystem II (LHCII) and the corresponding interactions with screen-printed graphite electrodes (GEs) are determined. No exogenous soluble redox mediators are used. LHCII isolated from spinach leaves are immobilized on GE by physical adsorption and through interactions with glutaraldehyde.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2018
Lipoxygenases (LOXs) are non-haem iron-containing dioxygenases that catalyse oxygenation of polyunsaturated fatty acids. This reaction is the first step in biosynthesis of oxylipins, which play important and diverse roles in stress response. In this study, we identified four LOX genes (PcLOXA, B, C, D) in chilling-sensitive runner bean (Phaseolus coccineus L.
View Article and Find Full Text PDFThe efficient and fluent operation of photosynthesis in plants relies on activity of pigment-protein complexes called antenna, absorbing light and transferring excitations toward the reaction centers. Here we show, based on the results of the fluorescence lifetime imaging analyses of single chloroplasts, that pigment-protein complexes, in dark-adapted plants, are not able to act effectively as photosynthetic antennas, due to pronounced, adverse excitation quenching. It appeared that the antenna function could be activated by a short (on a minute timescale) illumination with light of relatively low intensity, substantially below the photosynthesis saturation threshold.
View Article and Find Full Text PDFPlants in a temperate climate are often subject to different environmental factors, chilling stress among them, which influence the growth especially during early stages of plant development. Chloroplasts are one of the first organelles affected by the chilling stress. Therefore the proper biogenesis of chloroplasts in early stages of plant growth is crucial for undertaking the photosynthetic activity.
View Article and Find Full Text PDFBackground: Heavy metal exposure affect plant productivity by interfering, directly and indirectly, with photosynthetic reactions. The toxic effect of heavy metals on photosynthetic reactions has been reported in wide-ranging studies, however there is paucity of data in the literature concerning thallium (Tl) toxicity. Thallium is ubiquitous natural trace element and is considered the most toxic of heavy metals; however, some plant species, such as white mustard (Sinapis alba L.
View Article and Find Full Text PDFChloroplast biogenesis is a complex process that is integrated with plant development, leading to fully differentiated and functionally mature plastids. In this work, we used electron tomography and confocal microscopy to reconstruct the process of structural membrane transformation during the etioplast-to-chloroplast transition in runner bean (Phaseolus coccineus). During chloroplast development, the regular tubular network of paracrystalline prolamellar bodies (PLBs) and the flattened porous membranes of prothylakoids develop into the chloroplast thylakoids.
View Article and Find Full Text PDFAnnexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.
View Article and Find Full Text PDFIn this study, we analyzed multibilayer lipid-protein membranes composed of the photosynthetic light-harvesting complex II (LHCII; isolated from spinach [Spinacia oleracea]) and the plant lipids monogalcatosyldiacylglycerol and digalactosyldiacylglycerol. Two types of pigment-protein complexes were analyzed: those isolated from dark-adapted leaves (LHCII) and those from leaves preilluminated with high-intensity light (LHCII-HL). The LHCII-HL complexes were found to be partially phosphorylated and contained zeaxanthin.
View Article and Find Full Text PDFMembers of the rhodophytan order Cyanidiales are unique among phototrophs in their ability to live in extremely low pH levels and moderately high temperatures. The photosynthetic apparatus of the red alga Cyanidioschyzon merolae represents an intermediate type between cyanobacteria and higher plants, suggesting that this alga may provide the evolutionary link between prokaryotic and eukaryotic phototrophs. Although we now have a detailed structural model of photosystem II (PSII) from cyanobacteria at an atomic resolution, no corresponding structure of the eukaryotic PSII complex has been published to date.
View Article and Find Full Text PDFBackground: The thylakoid system in plant chloroplasts is organized into two distinct domains: grana arranged in stacks of appressed membranes and non-appressed membranes consisting of stroma thylakoids and margins of granal stacks. It is argued that the reason for the development of appressed membranes in plants is that their photosynthetic apparatus need to cope with and survive ever-changing environmental conditions. It is not known however, why different plant species have different arrangements of grana within their chloroplasts.
View Article and Find Full Text PDFChloroplast biogenesis is a multistage process leading to fully differentiated and functionally mature plastids. Complex analysis of chloroplast biogenesis was performed on the structural and functional level of its organization during the photoperiodic plant growth after initial growth of seedlings in the darkness. We correlated, at the same time intervals, the structure of etioplasts transforming into mature chloroplasts with the changes in the photosynthetic protein levels (selected core and antenna proteins of PSI and PSII) and with the function of the photosynthetic apparatus in two plant species: bean (Phaseolus vulgaris L.
View Article and Find Full Text PDFThe effects of 50 microM cadmium (Cd) or copper (Cu) ions on the supramolecular conformation of the light-harvesting pigment-protein complex of PSII (LHCII) isolated from rye seedlings were studied. It was found that the action of these two metal ions on the LHCII structure and organization is dissimilar. The Fourier transform infrared (FTIR) measurements indicated inhibition or stimulation of formation of parallel beta-structures and aggregates in the presence of Cd or Cu ions, respectively.
View Article and Find Full Text PDFWe performed for the first time three-dimensional (3D) modelling of the entire chloroplast structure. Stacks of optical slices obtained by confocal laser scanning microscope (CLSM) provided a basis for construction of 3D images of individual chloroplasts. We selected pea (Pisum sativum) and bean (Phaseolus vulgaris) chloroplasts since we found that they differ in thylakoid organization.
View Article and Find Full Text PDFRaman scattering spectra of light-harvesting complex LHCII isolated from spinach were recorded with an argon laser, tuned to excite the most red-absorbing LHCII-bound xanthophylls (514.5 nm). The intensity of the nu(4) band (at ca.
View Article and Find Full Text PDFFerredoxin:NADP(+) oxidoreductase is an enzyme associated with the stromal side of the thylakoid membrane in the chloroplast. It is involved in photosynthetic linear electron transport to produce NADPH and is supposed to play a role in cyclic electron transfer, generating a transmembrane pH gradient allowing ATP production, if photosystem II is non-functional or no NADP(+) is available for reduction. Different FNR isoforms have been described in non-photosynthetic tissues, where the enzyme catalyses the NADPH-dependent reduction of ferredoxin (Fd), necessary for some biosynthetic pathways.
View Article and Find Full Text PDF