essential oil () has been reported to have an impact on the cardiovascular system. However, its toxicity remains unknown. Therefore, the objective of this investigation was to evaluate the toxicological aspects of the extract.
View Article and Find Full Text PDFMagnesium-sensitive transient receptor potential melastatin (TRPM) ion channels, TRPM6 and TRPM7, are present in several organs, but their roles in the heart remain unclear. Therefore, here, we studied the expression patterns of TRPM6 and TRPM7 in normal and diseased myocardium. Cardiac atrial tissue and cardiomyocytes were obtained from healthy pigs and undiseased human hearts as well as from hearts of patients with ischemic heart disease (IHD) or atrial fibrillation (AF).
View Article and Find Full Text PDFThe demand for the development of novel medicines with few side effects and no proarrhythmic properties is increasing. Extensive research on herbal extracts has been conducted with the expectation that the compounds will exert precise effects without harmful side effects. (Thunb.
View Article and Find Full Text PDFThe cardiac Mg-sensitive, TRPM6, and TRPM7-like channels remain undefined, especially with the uncertainty regarding TRPM6 expression in cardiomyocytes. Additionally, their contribution to the cardiac action potential (AP) profile is unclear. Immunofluorescence assays showed the expression of the TRPM6 and TRPM7 proteins in isolated pig atrial and ventricular cardiomyocytes, of which the expression was modulated by incubation in extracellular divalent cation-free conditions.
View Article and Find Full Text PDFThe expression of the channels-enzymes TRPM6 and TRPM7 in the human heart remains poorly defined, and TRPM6 is generally considered not to be expressed in cardiomyocytes. We examined their expression at protein and mRNA levels using right atrial samples resected from patients (n = 72) with or without ischemic heart disease (IHD) and samples from all chamber walls of explanted human hearts (n = 9). TRPM6 and TRPM7 proteins were detected using immunofluorescence on isolated cardiomyocytes, ELISA on tissue homogenates, and immunostaining of cardiac tissue, whereas their mRNAs were detected by RT-qPCR.
View Article and Find Full Text PDFOptical mapping is recognized as a promising tool for the registration of electrical activity in the heart. Most cardiac optical mapping experiments are performed in ex vivo isolated heart models. However, the electrophysiological properties of the heart are highly influenced by the autonomic nervous system as well as humoral regulation; therefore, in vivo investigations of heart activity in large animals are definitely preferred.
View Article and Find Full Text PDFessential oil () has been developed in Lithuania and internationally patented as exerting antiarrhythmic properties. Here we demonstrate the pharmacological effects of this herbal preparation on cardiac electrical activity. We used cardiac surface ECG and a combination of microelectrode and optical mapping techniques to track the action potentials (APs) in the Langendorff-perfused rabbit heart model during atrial/endo-/epi-cardial pacing.
View Article and Find Full Text PDFThe emergence of optical imaging has revolutionized the investigation of cardiac electrical activity and associated disorders in various cardiac pathologies. The electrical signals of the heart and the propagation pathways are crucial for elucidating the mechanisms of various cardiac pathological conditions, including arrhythmia. The synthesis of near-infrared voltage-sensitive dyes and the voltage sensitivity of the FDA-approved dye Cardiogreen have increased the importance of optical mapping (OM) as a prospective tool in clinical practice.
View Article and Find Full Text PDFDespite the wide application of carvacrol (CAR) in medicines, dietary supplements, and foods, there is still insufficient electrophysiological data on the mechanisms of action of CAR, particularly with regard to heart function. Therefore, in this study, we attempted to elucidate whether CAR, whose inhibitory effect on both cardiac and vascular TRPM7 and L-type Ca currents has been demonstrated previously, could modify cardiac electrical activity. We used a combination of optical mapping and microelectrode techniques to track the action potentials (APs) and the spread of electrical activity in a Langendorff-perfused rabbit heart model during atrial/endo/epicardial pacing.
View Article and Find Full Text PDFMyocardial ischemia is associated with significant changes in action potential (AP) duration, which has a biphasic response to metabolic inhibition. Here, we investigated the mechanism of initial AP prolongation in whole Langendorff-perfused rabbit heart. We used glass microelectrodes to record APs transmurally.
View Article and Find Full Text PDFIndocyanine green (ICG) fluorescent dye has been approved by the FDA for use in medical diagnostics. Recently, we demonstrated that ICG dye has voltage-sensitive properties with a dual-component (fast and slow) response in the Langendorff-perfused rabbit heart. Here, we extended our studies by showing the different spectral properties of both components for analysis of the fractional change in ICG fluorescence in response to voltage changes.
View Article and Find Full Text PDFTRPM7 channels participate in a variety of physiological/pathological processes. TRPM7 currents are modulated by protons but opposing effects of external pH (pHo) (potentiation vs inhibition) have been reported. TRPM7 has been less studied in human cardiomyocytes than in heart-derived non-cardiomyocyte cells.
View Article and Find Full Text PDFSo far, the optical mapping of cardiac electrical signals using voltage-sensitive fluorescent dyes has only been performed in experimental studies because these dyes are not yet approved for clinical use. It was recently reported that the well-known and widely used fluorescent dye indocyanine green (ICG), which has FDA approval, exhibits voltage sensitivity in various tissues, thus raising hopes that electrical activity could be optically mapped in the clinic. The aim of this study was to explore the possibility of using ICG to monitor cardiac electrical activity.
View Article and Find Full Text PDFBackground: Because of the optical features of heart tissue, optical and electrical action potentials are only moderately associated, especially when near-infrared dyes are used in optical mapping (OM) studies.
Objective: By simultaneously recording transmural electrical action potentials (APs) and optical action potentials (OAPs), we aimed to evaluate the contributions of both electrical and optical influences to the shape of the OAP upstroke.
Methods And Results: A standard glass microelectrode and OM, using an near-infrared fluorescent dye (di-4-ANBDQBS), were used to simultaneously record transmural APs and OAPs in a Langendorff-perfused rabbit heart during atrial, endocardial, and epicardial pacing.
This study investigates the development of the spatiotemporal pattern of action potential alternans during acute regional ischemia. Experiments were carried out in isolated Langendorff-perfused rabbit heart using a combination of optical mapping and microelectrode recordings. The alternans pattern significantly changed over time and had a biphasic character reaching maximum at 6-9 min after occlusion.
View Article and Find Full Text PDFAims: Considerable shortcomings in the treatment of myocardial infarction (MI) still exist and therefore mortality remains high. Cardiac stem cell (CSC) therapy is a promising approach for myocardial repair. However, identification and isolation of candidate CSCs is mainly based on the presence or absence of certain cell surface markers, which suffers from some drawbacks.
View Article and Find Full Text PDFObjectives: Diclofenac and other non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment of inflammation and pain. Most effects of NSAIDs are attributed to the inhibition of cyclooxygenases (COX). However, many NSAIDs may have other effects not related to COX, including the modulation of various ion channels.
View Article and Find Full Text PDFBackground: TRPM7 (Transient Receptor Potential of the Melastatin subfamily) proteins are highly expressed in the heart, however, electrophysiological studies, demonstrating and characterizing these channels in human cardiomyocytes, are missing.
Methods: We have used the patch clamp technique to characterize the biophysical properties of TRPM7 channel in human myocytes isolated from right atria small chunks obtained from 116 patients in sinus rhythm during coronary artery and valvular surgery. Under whole-cell voltage-clamp, with Ca²⁺ and K⁺ channels blocked, currents were generated by symmetrical voltage ramp commands to potentials between -120 and +80 mV, from a holding potential of -80 mV.
N-(p-amylcinnamoyl)anthranilic acid (ACA), a phospholipase A(2) (PLA(2)) inhibitor, is structurally-related to non-steroidal anti-inflammatory drugs (NSAIDs) of the fenamate group and may also modulate various ion channels. We used the whole-cell, patch-clamp technique at room temperature to investigate the effects of ACA on the Ca(2+)-activated chloride current (I(Cl(Ca))) and other chloride currents in isolated pig cardiac ventricular myocytes. ACA reversibly inhibited I(Cl(Ca)) in a concentration-dependent manner (IC(50)=4.
View Article and Find Full Text PDFBackground And Purpose: Interest in non-selective cation channels has increased recently following the discovery of transient receptor potential (TRP) proteins, which constitute many of these channels.
Experimental Approach: We used the whole-cell patch-clamp technique on isolated ventricular myocytes to investigate the effect of flufenamic acid (FFA) and related drugs on membrane ion currents.
Key Results: With voltage-dependent and other ion channels inhibited, cells that were exposed to FFA, N-(p-amylcinnamoyl)anthranilic acid (ACA), ONO-RS-082 or niflumic acid (NFA) responded with an increase in currents.
Human ether à go-go related gene (hERG1) potassium channels underlie the repolarizing I(Kr) current in the heart. Since they are targets of various drugs with cardiac side effects we tested whether the amiodarone derivative 2-methyl-3-(3,5-diiodo-4-carboxymethoxybenzyl)benzofuran (KB130015) blocks hERG1 channels like its parent compound. Using patch-clamp and two-electrode voltage-clamp techniques we found that KB130015 blocks native and recombinant hERG1 channels at high voltages, but it activates them at low voltages.
View Article and Find Full Text PDFBackground/aims: A magnesium-inhibited, transient receptor potential melastatin 7 (TRPM7)-like channel is expressed in cardiac cell membranes. The role and regulation of this channel by intracellular nucleotides and membrane components remain unclear.
Methods: We used the whole-cell voltage-clamp technique in pig isolated ventricular myocytes to investigate the effect of non-hydrolysable guanine nucleotides.
beta3-adrenergic receptor (beta3-AR) activation produces a negative inotropic effect in human ventricles. Here we explored the role of beta3-AR in the human atrium. Unexpectedly, beta3-AR activation increased human atrial tissue contractility and stimulated the L-type Ca2+ channel current (I Ca,L) in isolated human atrial myocytes (HAMs).
View Article and Find Full Text PDFMagnesium regulates various ion channels in many tissues, including those of the cardiovascular system. General mechanisms by which intracellular Mg(2+) (Mg(i)(2+)) regulates channels are presented. These involve either a direct interaction with the channel, or an indirect modification of channel function via other proteins, such as enzymes or G proteins, or via membrane surface charges and phospholipids.
View Article and Find Full Text PDFRocz Akad Med Bialymst
January 2006
Purpose: The purpose of the present study was to determine whether extracellular osmotic pressure modulates beta2-adrenergic stimulation of the contraction force and L-type Ca2+ current in human atrial myocytes.
Material And Methods: Experiments were performed on human atrial trabeculae and myocytes isolated from the right atrium. The concentration dependent effect of salbutamol (SAL), a beta2-adrenoreceptor agonist, on peak tension (P) and L-type calcium current (ICaL) under isoosmolar (345 mOsm) and hyperosmolar (405 or 525 mOsm was achieved by adding of mannitol) conditions was studied.