Introduction: Folate receptors (FR) have been considered a convenient target for different radiopharmaceuticals in recent years. Multifarious Ga-labeled folate conjugates have been proposed as promising agents for the PET imaging of FR-overexpressing malignant neoplasms. In addition, radiolabeled folate-based conjugates can be effective for imaging non-tumor pathological foci characterized by a pronounced cluster of activated macrophages.
View Article and Find Full Text PDFWe report a modified carbocyanine-based asymmetric fluorescent dye, suitable for the azide-alkyne cycloaddition reaction, that possesses promising photochemical properties (Φ = 0,49). As an example of usage of the new fluorophore, it was conjugated to a ligand targeting prostate-specific membrane antigen (PSMA), one of the widely utilized prostate cancer markers.
View Article and Find Full Text PDFPhosphorothioate (PS) group is a key component of a majority of FDA approved oligonucleotide drugs that increase stability to nucleases whilst maintaining interactions with many proteins, including RNase H in the case of antisense oligonucleotides (ASOs). At the same time, uniform PS modification increases nonspecific protein binding that can trigger toxicity and pro-inflammatory effects, so discovery and characterization of alternative phosphate mimics for RNA therapeutics is an actual task. Here we evaluated the effects of the introduction of several -alkane sulfonyl phosphoramidate groups such as mesyl (methanesulfonyl) or busyl (1-butanesulfonyl) phosphoramidates into gapmer ASOs on the efficiency and pattern of RNase H cleavage, cellular uptake , and intracellular localization.
View Article and Find Full Text PDFFluorescent dyes are widely used in histological studies and in intraoperative imaging, including surgical treatment of prostate cancer (PC), which is one of the most common types of cancerous tumors among men today. Targeted delivery of fluorescent conjugates greatly improves diagnostic efficiency and allows for timely correct diagnosis. In the case of PC, the protein marker is a prostate-specific membrane antigen (PSMA).
View Article and Find Full Text PDFProstate-specific membrane antigen (PSMA) has been identified as a target for the development of theranostic agents. In our current work, we describe the design and synthesis of novel N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-(S)-L-lysine (DCL) urea-based PSMA inhibitors with a chlorine-substituted aromatic fragment at the lysine ε-nitrogen atom, a dipeptide including two phenylalanine residues in the L-configuration as the peptide fragment of the linker, and 3- or 4-(tributylstannyl)benzoic acid as a prosthetic group in their structures for radiolabeling. The standard compounds [I]PSMA-m-IB and [I]PSMA-p-IB for comparative and characterization studies were first synthesized using two alternative synthetic approaches.
View Article and Find Full Text PDFProstate cancer is the second most common cancer among men. We designed and synthesized new ligands targeting prostate-specific membrane antigen and suitable for bimodal conjugates with diagnostic and therapeutic agents. studies of the affinity of the synthesized compounds to the protein target have been carried out.
View Article and Find Full Text PDFProstate cancer is the second most common type of cancer among men. The main method of its treatment is androgen deprivation therapy, which has a wide range of side effects. One of the solutions to this challenge is the targeted delivery of drugs to prostate cancer cells.
View Article and Find Full Text PDFWe report an improved series of ligands targeting prostate specific membrane antigen (PSMA). The new compounds were designed by the introduction of changes in the structure of the aromatic fragment at ε-nitrogen atom of lysine that resulted in improved biological parameters. Some of them demonstrated high selectivity and nanomolar IC values.
View Article and Find Full Text PDFProstate cancer is the second most common type of cancer among men. Its main method of treatment is chemotherapy, which has a wide range of side effects. One of the solutions to this challenge is targeted delivery to prostate cancer cells.
View Article and Find Full Text PDFProstate cancer is one of the most commonly diagnosed men's cancers and remains one of the leading causes of cancer death. The development of approaches to the treatment of this oncological disease is an ongoing process. In this work, we have carried out the selection of ligands for the creation of conjugates based on the drug docetaxel and synthesized a series of three docetaxel conjugates.
View Article and Find Full Text PDFThis review presents data on dual conjugates of therapeutic and diagnostic action for targeted delivery to prostate cancer cells. The works of the last ten years on this topic were analyzed. The mail attention focuses on low-molecular-weight conjugates directed to the prostate-specific membrane antigen (PSMA); the comparison of high and low molecular weight PSMA-targeted conjugates was made.
View Article and Find Full Text PDFCancer is one of the leading social problems of the modern world. Today prostate cancer is the second leading cause of cancer deaths among men. Targeted drug delivery is widely used to treat and diagnose prostate cancer.
View Article and Find Full Text PDFProstate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), is a suitable target for specific delivery of antitumor drugs and diagnostic agents due to its overexpression in prostate cancer cells. In the current work, we describe the design, synthesis, and biological evaluation of novel low-molecular PSMA ligands and conjugates with fluorescent dyes FAM-5, SulfoCy5, and SulfoCy7. evaluation of synthesized PSMA ligands on the activity of PSMA shows that the addition of aromatic amino acids into a linker structure leads to a significant increase in inhibition.
View Article and Find Full Text PDFA strategy for stereoselective synthesis of molecular platform for targeted delivery of bimodal therapeutic or theranostic agents to the prostate-specific membrane antigen (PSMA) receptor was developed. The proposed platform contains a urea-based, PSMA-targeting Glu-Urea-Lys (EuK) fragment as a vector moiety and tripeptide linker with terminal amide and azide groups for subsequent addition of two different therapeutic and diagnostic agents. The optimal method for this molecular platform synthesis includes (a) solid-phase assembly of the polypeptide linker, (b) coupling of this linker with the vector fragment, (c) attachment of 3-aminopropylazide, and (d) amide and carboxylic groups deprotection.
View Article and Find Full Text PDFThe folate receptor (FR) is a promising cell membrane-associated target for molecular imaging and radionuclide therapy of cancer (FR-α) and potentially also inflammatory diseases (FR-β) through use of folic acid-based radioconjugate. FR is often overexpressed by cells of epithelial tumors, including tumors of ovary, cervix, endometrium, lungs, kidneys, etc. In healthy tissues, FR can be found in small numbers by the epithelial cells, mainly in the kidneys.
View Article and Find Full Text PDFComb Chem High Throughput Screen
August 2020
Introduction: A variety of organic compounds has been reported to have antibacterial activity. However, antimicrobial resistance is one of the main problems of current anti-infective therapy, and the development of novel antibacterials is one of the main challenges of current drug discovery.
Methods: Using our previously developed dual-reporter High-Throughput Screening (HTS) platform, we identified a series of furanocoumarins as having high antibacterial activity.
The present report describes our efforts to identify new structural classes of compounds having promising antibacterial activity using previously published double-reporter system pDualrep2. This semi-automated high-throughput screening (HTS) platform has been applied to perform a large-scale screen of a diverse small-molecule compound library. We have selected a set of more than 125,000 molecules and evaluated them for their antibacterial activity.
View Article and Find Full Text PDFProstate cancer (PC) is the second most commonly occurring cancer in men. Conventional chemotherapy has wide variety of disadvantages such as high systemic toxicity and low selectivity. Targeted drug delivery is a promising approach to decrease side effects of therapy.
View Article and Find Full Text PDFBackground: The key issue in the development of novel antimicrobials is a rapid expansion of new bacterial strains resistant to current antibiotics. Indeed, World Health Organization has reported that bacteria commonly causing infections in hospitals and in the community, e.g.
View Article and Find Full Text PDFComb Chem High Throughput Screen
August 2019
Aim And Objective: Antibiotic resistance is a serious constraint to the development of new effective antibacterials. Therefore, the discovery of the new antibacterials remains one of the main challenges in modern medicinal chemistry. This study was undertaken to identify novel molecules with antibacterial activity.
View Article and Find Full Text PDFA series of 5-oxo-4H-pyrrolo[3,2-b]pyridine derivatives was identified as novel class of highly potent antibacterial agents during an extensive large-scale high-throughput screening (HTS) program utilizing a unique double-reporter system-pDualrep2. The construction of the reporter system allows us to perform visual inspection of the underlying mechanism of action due to two genes-Katushka2S and RFP-which encode the proteins with different imaging signatures. Antibacterial activity of the compounds was evaluated during the initial HTS round and subsequent rescreen procedure.
View Article and Find Full Text PDFProstate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), has recently emerged as a prominent biomarker of prostate cancer (PC) and as an attractive protein trap for drug targeting. At the present time, several drugs and molecular diagnostic tools conjugated with selective PSMA ligands are actively evaluated in different preclinical and clinical trials. In the current work, we discuss design, synthesis and a preliminary biological evaluation of PSMA-specific small-molecule carrier equipped by Doxorubicin (Dox).
View Article and Find Full Text PDFWe synthesized a fluorescence conjugate and modified magnetite-gold nanoparticles carrying prostate specific membrane antigen (PSMA) as the ligand. Analysis of their binding to human prostate cancer cell lines PC-3 (PSMA) and LNCaP (PSMA) showed selective interaction of the synthesized conjugate and modified nanoparticles with LNCaP cells. These findings suggest that these nanoparticles can be used in tissue-specific magnetic-resonance imaging.
View Article and Find Full Text PDF