Publications by authors named "Machiel Noordeloos"

Mushroom-forming fungi (Agaricomycetes) have the greatest morphological diversity and complexity of any group of fungi. They have radiated into most niches and fulfil diverse roles in the ecosystem, including wood decomposers, pathogens or mycorrhizal mutualists. Despite the importance of mushroom-forming fungi, large-scale patterns of their evolutionary history are poorly known, in part due to the lack of a comprehensive and dated molecular phylogeny.

View Article and Find Full Text PDF
Article Synopsis
  • Two proposals have been put forward to allow DNA sequences to be used as types for naming certain fungi, which could fundamentally alter the definition of nomenclatural types and lead to various issues in scientific reproducibility and nomenclatural instability.
  • The authors argue against these proposals, suggesting that they would not effectively address the challenges of naming taxa based solely on DNA and propose instead that formulas for naming candidate taxa could be a better solution without changing existing nomenclature rules.
View Article and Find Full Text PDF

Western European coastal sand dunes are highly important for nature conservation. Communities of the creeping willow (Salix repens) represent one of the most characteristic and diverse vegetation types in the dunes. We report here the results of the first kingdom-wide fungal diversity assessment in S.

View Article and Find Full Text PDF

Crinipellis pedemontana, a new agaric growing on stems of dead grasses in an Italian urban park, is described and illustrated. It fits in sect. Grisentinae on account of the green reaction with KOH and ammonia and its bright colored pileus.

View Article and Find Full Text PDF

We investigated inter- and intraspecific phylogenetic relationships in the ectomycorrhizal fungal genus Leccinum section Scabra. Species of this section are exclusively associated with Betula and occur throughout the Northern Hemisphere. We compared the phylogenetic relationships of arctic, alpine, boreal and temperate accessions of section Scabra based on DNA sequences of the single-copy nuclear gene Gapdh and the multiple-copy nuclear region 5.

View Article and Find Full Text PDF