Therapeutic plasma exchange (TPE) is a widely used treatment for numerous diseases including pregnancy-related conditions. Our prior study on 20 early-onset preeclampsia patients undergoing TPE revealed a significant extension in pregnancy duration and reduced serum levels of sFlt-1, sFlt-1/PlGF, and sEndoglin. Here, we investigated the impact of TPE on serum sB7-H4, an immunological checkpoint molecule, and placental proteins (Flt-1, Eng, B7-H4, iNOS, TNF-α) in TPE-treated early-onset preeclampsia patients (N = 12, 23 + 2-28 + 5 weeks), conventionally treated counterparts (N = 12, 23 + 5-30 weeks), and gestational age-matched controls (N = 8, 22 + 4-31 + 6 weeks).
View Article and Find Full Text PDFOmics-based measurements enable the study of biomolecules in a high-throughput fashion, leading to the characterization and quantification of biological systems. Multi-omics methods aim to incorporate several omics measurements for a more holistic approach, which is crucial for advancing our understanding of the diversity and redundancy of biological systems. Current multi-omics sample preparation methods have achieved proteomics, lipidomics, and metabolomics from individual samples; however, the bioinformatic tools currently available for interpreting data generated from these omics are limited.
View Article and Find Full Text PDFAlthough classical molecular biology assays can provide a measure of cellular response to chemical challenges, they rely on a single biological phenomenon to infer a broader measure of cellular metabolic response. These methods do not always afford the necessary sensitivity to answer questions of subcytotoxic effects, nor do they work for all cell types. Likewise, boutique assays such as cardiomyocyte beat rate may indirectly measure cellular metabolic response, but they too, are limited to measuring a specific biological phenomenon and are often limited to a single cell type.
View Article and Find Full Text PDFField-forward analytical technologies, such as portable mass spectrometry (MS), enable essential capabilities for real-time monitoring and point-of-care diagnostic applications. Significant and recent investments improving the features of miniaturized mass spectrometers enable various new applications outside of small molecule detection. Most notably, the addition of tandem mass spectrometry scans (MS/MS) allows the instrument to isolate and fragment ions and increase the analytical specificity by measuring unique chemical signatures for ions of interest.
View Article and Find Full Text PDFFilamentous fungi are known to secrete biochemicals that drive the synthesis of nanoparticles (NPs) that vary in composition, size, and shape; a process deemed mycosynthesis. Following the introduction of precursor salts directly to the fungal mycelia or their exudates, mycosynthesis proceeds at ambient temperature and pressure, and near neutral pH, presenting significant energy and cost savings over traditional chemical or physical approaches. The mycosynthesis of zinc oxide (ZnO) NPs by various fungi exhibited a species dependent morphological preference for the resulting NPs, suggesting that key differences in the biochemical makeup of their individual exudates may regulate the controlled nucleation and growth of these different morphologies.
View Article and Find Full Text PDFSo far, bacterial regulatory sRNAs of length less than 50 nucleotides have been poorly understood, and a low number of such molecules has been identified. The first microRNA-size functional ribonucleic acid occurring in a bacterial cell has been described only recently, and it was found to be encoded by a bacteriophage. One of the reasons for such a scarcity in this field is the lack of procedures intended for the isolation and selection of molecules of this size from bacterial cells.
View Article and Find Full Text PDFThe 24B_1 small non-coding RNA molecule has been identified in Escherichia coli after induction of Shiga toxin-converting bacteriophage Φ24B. In this work, we focused on its direct role during phage and bacterial host development. We observed that in many aspects, this phage sRNA resembles herpesviral microRNAs.
View Article and Find Full Text PDFBackground: The underlying mechanism of high T-cell presence as a favorable prognostic factor in high-grade serous ovarian carcinoma (HGSOC) is not yet understood. In addition to immune cells, various cofactors are essential for immune processes. One of those are metallothioneins (MTs), metal-binding proteins comprising various isoforms.
View Article and Find Full Text PDFThe spatiotemporal control of gene expression in complex multicellular organisms relies on noncoding regulatory sequences such as enhancers, which activate transcription of target genes often over large genomic distances. Despite the advances in the identification and characterization of enhancers, the principles and mechanisms by which enhancers select and control their target genes remain largely unknown. Here, we review recent interdisciplinary and quantitative approaches based on emerging techniques that aim to address open questions in the field, notably how regulatory information is encoded in the DNA sequence, how this information is transferred from enhancers to promoters, and how these processes are regulated in time.
View Article and Find Full Text PDFMass spectrometry based 'omics pairs well with organ-on-a-chip-based investigations, which often have limited cellular material for sampling. However, a common issue with these chip-based platforms is well-to-well or chip-to-chip variability in the proteome and metabolome due to factors such as plate edge effects, cellular asynchronization, effluent flow, and limited cell count. This causes high variability in the quantitative multi-omics analysis of samples, potentially masking true biological changes within the system.
View Article and Find Full Text PDFIn mammals, interactions between sequences within topologically associating domains enable control of gene expression across large genomic distances. Yet it is unknown how frequently such contacts occur, how long they last and how they depend on the dynamics of chromosome folding and loop extrusion activity of cohesin. By imaging chromosomal locations at high spatial and temporal resolution in living cells, we show that interactions within topologically associating domains are transient and occur frequently during the course of a cell cycle.
View Article and Find Full Text PDFThe treatment of atrial fibrillation (AF) continues to be a significant clinical challenge. While genome-wide association studies (GWAS) are beginning to identify AF susceptibility genes (Gudbjartsson et al., Nature, 2007, 448, 353-357; Choi et al.
View Article and Find Full Text PDFIntroduction: Minimally invasive (MI) surgery has long been established as a standard for hysterectomy in benign conditions. Robotic surgery is generally seen as equivalent to conventional laparoscopy in terms of patient outcome. However, robotics might facilitate an MI approach even in complex patients, rendering laparotomy unnecessary for almost all patients.
View Article and Find Full Text PDFAm J Reprod Immunol
December 2022
Problem: T-cells are key players in fighting the coronavirus disease 2019 (COVID-19). The checkpoint molecule B7-H4, a member of the B7 family, can inhibit T-cell activation and proliferation by inhibiting NF-kb expression. We aimed to elucidate the immunological role of soluble B7-H4 (sB7-H4) and B7-H4 in pregnant women suffered from an acute Sars-Cov2 infection.
View Article and Find Full Text PDFPurpose: Sarcopenia has been established as the "gold standard" for the treatment of pelvic organ prolapse (POP). Minimal invasive laparoscopy can help to reduce the risks of open access surgery. We compare the surgical results and outcomes of robotic-assisted sacropexies.
View Article and Find Full Text PDFThere is a growing need to uncover biomarkers of ionizing radiation exposure that leads to a better understanding of how exposures take place, including dose type, rate, and time since exposure. As one of the first organs to be exposed to external sources of ionizing radiation, skin is uniquely positioned in terms of model systems for radiation exposure study. The simultaneous evolution of both MS-based -omics studies, as well as in vitro 3D skin models, has created the ability to develop a far more holistic understanding of how ionizing radiation affects the many interconnected biomolecular processes that occur in human skin.
View Article and Find Full Text PDFThe angiogenic factors sFlt-1 and PlGF play an established role in the detection of preeclampsia (PE). Recent data suggest that sEng might contribute to the pathogenesis of PE. However, only a few studies so far have addressed its role.
View Article and Find Full Text PDFChromosome structure in mammals is thought to regulate transcription by modulating three-dimensional interactions between enhancers and promoters, notably through CTCF-mediated loops and topologically associating domains (TADs). However, how chromosome interactions are actually translated into transcriptional outputs remains unclear. Here, to address this question, we use an assay to position an enhancer at large numbers of densely spaced chromosomal locations relative to a fixed promoter, and measure promoter output and interactions within a genomic region with minimal regulatory and structural complexity.
View Article and Find Full Text PDFSuppression of the host innate immune response is a critical aspect of viral replication. Upon infection, viruses may introduce one or more proteins that inhibit key immune pathways, such as the type I interferon pathway. However, the ability to predict and evaluate viral protein bioactivity on targeted pathways remains challenging and is typically done on a single-virus or -gene basis.
View Article and Find Full Text PDFBackground: High-grade serous ovarian cancer (HGSOC) is the predominant and deadliest form of ovarian cancer. Some of its histological subtypes can be distinguished by frequent occurrence of cancer-associated myofibroblasts (CAFs) and desmoplastic stroma reaction (DSR). In this study, we want to explore the relationship between therapy outcome and the activity of CAF-associated signaling pathways in a homogeneous HGSOC patient collective.
View Article and Find Full Text PDFWomens Health (Lond)
February 2022
Objectives: Nationwide hospitalization data on the surgical management of ovarian cancer are scant. We assessed type of surgery, surgical approach, length of stay, surgery-related complications and in-hospital mortality among women with ovarian cancer in Germany. We analyzed nationwide hospitalization file of 2005 through 2015 including 77,589 ovarian cancer-related hospitalizations associated with ovarian surgery.
View Article and Find Full Text PDFProblem: The aim of this study was to evaluate the soluble programmed death-ligand (sPD-L1) and soluble B7-H4 (sB7-H4) serum concentration levels longitudinal throughout the three trimesters of uncomplicated pregnancies. METHOD OF THE STUDY: sPD-L1 and sB7-H4 levels were determined with enzyme-linked immunosorbent assay (ELISA). The patients (n = 26) were divided into three groups according to the pregnancy trimester.
View Article and Find Full Text PDFBy characterizing physiological changes that occur in warfighters during simulated combat, we can start to unravel the key biomolecular components that are linked to physical and cognitive performance. Viable field-based sensors for the warfighter must be rapid and noninvasive. In an effort to facilitate this, we applied a multiomics pipeline to characterize the stress response in the saliva of warfighters to correlate biomolecular changes with overall performance and health.
View Article and Find Full Text PDFIntroduction: Epithelial ovarian cancer (EOC) is the deadliest gynecologic malignancy worldwide. Reliable predictive biomarkers are urgently needed to estimate the risk of relapse and to improve treatment management. Soluble immune-checkpoints in EOC are promising molecules serving as prognostic biomarkers accessible liquid biopsy.
View Article and Find Full Text PDF