Excited-state spectroscopy from the first experiment at the Facility for Rare Isotope Beams (FRIB) is reported. A 24(2)-μs isomer was observed with the FRIB Decay Station initiator (FDSi) through a cascade of 224- and 401-keV γ rays in coincidence with ^{32}Na nuclei. This is the only known microsecond isomer (1 μs≤T_{1/2}<1 ms) in the region.
View Article and Find Full Text PDFAbsolute cross sections for the addition of s- and d-wave neutrons to ^{14}C and ^{14}N have been determined simultaneously via the (d,p) reaction at 10 MeV/u. The difference between the neutron and proton separation energies, ΔS, is around -20 MeV for the ^{14}C+n system and +8 MeV for ^{14}N+n. The population of the 1s_{1/2} and 0d_{5/2} orbitals for both systems is reduced by a factor of approximately 0.
View Article and Find Full Text PDFPharmaceuticals (Basel)
February 2021
Background: Precision medicine is based on molecular and genotypic patient characterization to define specific target treatment. BRAF mutation is an oncogenic driver, and the Cancer Genome Atlas has identified BRAF mutations in different cancer types. Tumor type agnostic therapy is based on targeting genomic alterations, regardless of tumor origin.
View Article and Find Full Text PDFPurpose: The six-minute walking test (6MWT) is a simple and widely used measure of functional capacity. The aim of this systematic review is to summarize findings on reliability of 6MWT in subjects who have had a stroke.
Methods: Two independent investigators conducted an extensive search in multidisciplinary electronic databases from inception to August 2019, and selected complete original studies on the reliability of the 6MWT used to assess individuals with stroke.
In an experiment performed at Lawrence Berkeley National Laboratory's 88-inch cyclotron, the isotope ^{244}Md was produced in the ^{209}Bi(^{40}Ar,5n) reaction. Decay properties of ^{244}Md were measured at the focal plane of the Berkeley Gas-filled Separator, and the mass number assignment of A=244 was confirmed with the apparatus for the identification of nuclide A. The isotope ^{244}Md is reported to have one, possibly two, α-decaying states with α energies of 8.
View Article and Find Full Text PDFWe report the measurement of reaction cross sections (σ_{R}^{ex}) of ^{27,29}F with a carbon target at RIKEN. The unexpectedly large σ_{R}^{ex} and derived matter radius identify ^{29}F as the heaviest two-neutron Borromean halo to date. The halo is attributed to neutrons occupying the 2p_{3/2} orbital, thereby vanishing the shell closure associated with the neutron number N=20.
View Article and Find Full Text PDFAn extensive, model-independent analysis of the nature of triaxial deformation in ^{76}Ge, a candidate for neutrinoless double-beta (0νββ) decay, was carried out following multistep Coulomb excitation. Shape parameters deduced on the basis of a rotational-invariant sum-rule analysis provided considerable insight into the underlying collectivity of the ground-state and γ bands. Both sequences were determined to be characterized by the same β and γ deformation parameter values.
View Article and Find Full Text PDFOne of the most exotic light neutron-rich nuclei currently accessible for experimental study is ^{40}Mg, which lies at the intersection of the nucleon magic number N=28 and the neutron drip line. Low-lying excited states of ^{40}Mg have been studied for the first time following a one-proton removal reaction from ^{41}Al, performed at the Radioactive Isotope Beam Factory of RIKEN Nishina Center with the DALI2 γ-ray array and the ZeroDegree spectrometer. Two γ-ray transitions were observed, suggesting an excitation spectrum that shows unexpected properties as compared to both the systematics along the Z=12, N≥20 Mg isotopes and available state-of-the-art theoretical model predictions.
View Article and Find Full Text PDFAn experiment was performed at Lawrence Berkeley National Laboratory's 88-in. Cyclotron to determine the mass number of a superheavy element. The measurement resulted in the observation of two α-decay chains, produced via the ^{243}Am(^{48}Ca,xn)^{291-x}Mc reaction, that were separated by mass-to-charge ratio (A/q) and identified by the combined BGS+FIONA apparatus.
View Article and Find Full Text PDFThe apparent splitting between orbitals that are spin-orbit partners can be substantially influenced by the effects of weak binding. In particular, such effects can account for the observed decrease in separation of the neutron 1p_{3/2} and 1p_{1/2} orbitals between the ^{41}Ca and ^{35}Si isotopes. This behavior has been the subject of recent experimental and theoretical works and cited as evidence for a proton "bubble" in ^{34}Si causing an explicit weakening of the spin-orbit interaction.
View Article and Find Full Text PDFDespite the more than 1 order of magnitude difference between the measured dipole moments in ^{144}Ba and ^{146}Ba, the octupole correlations in ^{146}Ba are found to be as strong as those in ^{144}Ba with a similarly large value of B(E3;3^{-}→0^{+}) determined as 48(+21-29) W.u. The new results not only establish unambiguously the presence of a region of octupole deformation centered on these neutron-rich Ba isotopes, but also manifest the dependence of the electric dipole moments on the occupancy of different neutron orbitals in nuclei with enhanced octupole strength, as revealed by fully microscopic calculations.
View Article and Find Full Text PDFPrevious experiments observed a 4^{+} state in the N=28 nucleus ^{44}S and suggested that this state may exhibit a hindered E2-decay rate, inconsistent with being a member of the collective ground state band. We populate this state via two-proton knockout from a beam of exotic ^{46}Ar projectiles and measure its lifetime using the recoil distance method with the GRETINA γ-ray spectrometer. The result, 76(14)_{stat}(20)_{syst} ps, implies a hindered transition of B(E2;4^{+}→2_{1}^{+})=0.
View Article and Find Full Text PDFThe neutron-rich nucleus ^{144}Ba (t_{1/2}=11.5 s) is expected to exhibit some of the strongest octupole correlations among nuclei with mass numbers A less than 200. Until now, indirect evidence for such strong correlations has been inferred from observations such as enhanced E1 transitions and interleaving positive- and negative-parity levels in the ground-state band.
View Article and Find Full Text PDFPhys Rev Lett
September 2015
Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247(73) μs have been discovered in the heavy ^{254}Rf nucleus.
View Article and Find Full Text PDFIntermediate-energy Coulomb excitation measurements are performed on the N ≥ 40 neutron-rich nuclei (66,68)Fe and (64)Cr. The reduced transition matrix elements providing a direct measure of the quadrupole collectivity B(E2;2(1)(+) → 0(1)(+)) are determined for the first time in (68)Fe(42) and (64)Cr(40) and confirm a previous recoil distance method lifetime measurement in (66)Fe(40). The results are compared to state-of-the-art large-scale shell-model calculations within the full fpgd neutron orbital model space using the Lenzi-Nowacki-Poves-Sieja effective interaction and confirm the results of the calculations that show these nuclei are well deformed.
View Article and Find Full Text PDFEstablishing how and when large N/Z values require modified or new theoretical tools is a major quest in nuclear physics. Here we report the first measurement of the lifetime of the 2(1)+ state in the near-dripline nucleus 20C. The deduced value of τ(2(1)+)=9.
View Article and Find Full Text PDFThe "island of inversion" nucleus 32 Mg has been studied by a (t, p) two neutron transfer reaction in inverse kinematics at REX-ISOLDE. The shape coexistent excited 0+ state in 32 Mg has been identified by the characteristic angular distribution of the protons of the Δ L=0 transfer. The excitation energy of 1058 keV is much lower than predicted by any theoretical model.
View Article and Find Full Text PDFWe have studied the ¹⁵C(d,p)¹⁶C reaction in inverse kinematics using the Helical Orbit Spectrometer at Argonne National Laboratory. Prior studies of electromagnetic-transition rates in ¹⁶C suggested an exotic decoupling of the valence neutrons from the core in that nucleus. Neutron-adding spectroscopic factors give a different probe of the wave functions of the relevant states in ¹⁶C.
View Article and Find Full Text PDFThe lifetime of the 2_+(1) state in 16C has been measured with the recoil distance method using the 9Be(9Be,2p) fusion-evaporation reaction at a beam energy of 40 MeV. The mean lifetime was measured to be 11.7(20) ps corresponding to a B(E2;2_+(1)-->0+) value of 4.
View Article and Find Full Text PDFThe E(gamma) - E(gamma) coincidence spectra from the electromagnetic decay of excited superdeformed states in (194)Hg reveal surprisingly narrow ridges, parallel to the diagonal. A total of 100-150 excited bands are found to contribute to these ridges, which account for nearly all the unresolved E2 decay strength. Comparison with theory suggests that these excited bands have many components in their wave functions, yet they display remarkable rotational coherence.
View Article and Find Full Text PDFA new frontier of discrete-line gamma-ray spectroscopy at ultrahigh spin has been opened in the rare-earth nuclei (157,158) Er. Four rotational structures, displaying high moments of inertia, have been identified, which extend up to spin approximately 65 variant Planck's over 2pi and bypass the band-terminating states in these nuclei which occur at approximately 45 variant Planck's over 2pi. Cranked Nilsson-Strutinsky calculations suggest that these structures arise from well-deformed triaxial configurations that lie in a valley of favored shell energy which also includes the triaxial strongly deformed bands in (161-167) Lu.
View Article and Find Full Text PDFHigh-spin states in 58Ni have been investigated by means of the fusion-evaporation reaction 28Si(32S, 2p)58Ni at 130 MeV beam energy. Discrete-energy levels are observed in 58Ni at record-breaking 42 MeV excitation energy and angular momenta in excess of 30h. The states form regular rotational bands with unprecedented high rotational frequencies.
View Article and Find Full Text PDFCoulomb activation of the four quasiparticle Kpi=16+ 178Hf isomer (t1/2=31 y) has led to the measurement of a set of Elamda matrix elements coupling the isomer band to the ground band. The present data combined with earlier 178 Hf Coulomb excitation data have probed the components in the wave functions and revealed the onset and saturation of K mixing in low-K bands, whereas the mixing is negligible in the high-K bands. The implications can be applied to other quadrupole-deformed nuclei.
View Article and Find Full Text PDF