This study investigated the role of brain regions involved in arithmetic processing in explaining individual differences in financial ability in 67 50-74-year-old cognitively normal adults. Structural integrity and resting-state functional connectivity measures were collected in the MRI scanner. Outside the scanner, participants performed financial ability and other cognitive tasks, and answered questionnaires to determine dementia risk, and financial risk and protective factors.
View Article and Find Full Text PDFVerbally memorized multiplication tables are thought to create language-specific memories. Supporting this idea, bilinguals are typically faster and more accurate in the language in which they learned math (LA+) than in their other language (LA- ) . No study has yet revealed the underlying neurocognitive mechanisms explaining this effect, or the role of problem size in explaining the recruitment of different brain regions in LA+ and LA- .
View Article and Find Full Text PDFMath learning is explained by the interaction between cognitive, affective, and social factors. However, studies rarely investigate how these factors interact with one another to explain math performance. This study aims to fill this gap in the literature by using functional magnetic resonance imaging (fMRI) to understand the neurocognitive mechanisms underlying the interaction between parental socioeconomic status (SES) and children's math attitudes.
View Article and Find Full Text PDFMath attitudes are related to achievement, yet we do not know how the brain supports changes in math attitudes. 51 children (54.9% female, 45.
View Article and Find Full Text PDFEnhancing student's math achievement is a significant educational challenge. Numerous studies have shown that math attitudes can predict improvement in math performance, but no study has yet revealed the underlying neurocognitive mechanisms explaining this effect. To answer this question, 50 children underwent functional magnetic resonance imaging (fMRI) when they were 11 (time 1; T1) and 13 (time 2; T2) years old.
View Article and Find Full Text PDFAlthough behavioral studies show large improvements in arithmetic skills in elementary school, we do not know how brain structure supports math gains in typically developing children. While some correlational studies have investigated the concurrent association between math performance and brain structure, such as gray matter volume (GMV), longitudinal studies are needed to infer if there is a causal relation. Although discrepancies in the literature on the relation between GMV and math performance have been attributed to the different demands on quantity vs.
View Article and Find Full Text PDFAttitudes towards math (ATM) predict math achievement. Negative ATM are associated with avoidance of math content, while positive ATM are associated with exerting more effort on math tasks. Recent literature highlights the importance of considering interactions between ATM and math skill in examining relations to achievement.
View Article and Find Full Text PDFThere is debate in the literature regarding how single-digit arithmetic fluency is achieved over development. While the Fact-retrieval hypothesis suggests that with practice, children shift from quantity-based procedures to verbally retrieving arithmetic problems from long-term memory, the Schema-based hypothesis claims that problems are solved through quantity-based procedures and that practice leads to these procedures becoming more automatic. To test these hypotheses, a sample of 46 typically developing children underwent functional magnetic resonance imaging (fMRI) when they were 11 years old (time 1), and 2 years later (time 2).
View Article and Find Full Text PDFBehavioral studies have shown discrepant results regarding the role of phonology in predicting math gains. The objective of this study was to use fMRI to study the role of activation during a rhyming judgment task in predicting behavioral gains on math fluency, multiplication, and subtraction skill. We focused within the left middle/superior temporal gyrus and left inferior frontal gyrus, brain areas associated with the storage of phonological representations and with their access, respectively.
View Article and Find Full Text PDFWe describe functional and structural data acquired using a 3T scanner in a sample of 132 typically developing children, who were scanned when they were approximately 11 years old (i.e. Time 1).
View Article and Find Full Text PDFModels of the neural basis of arithmetic argue that left inferior frontal cortex is involved in cognitive control of verbal representations of math facts in left lateral temporal cortex, whereas bilateral intra-parietal cortex is involved in numerical calculation. Lower levels of math competence for multiplications is associated with greater effortful retrieval because of less robust verbal representations and the engagement of numerical operations as a back-up strategy. Previous studies on multiplication have focused on brain activation in isolated nodes of the network, so we do not know how functional connectivity between these nodes is related to competence.
View Article and Find Full Text PDFThe objective of this study was to investigate, using a brain measure of approximate number system (ANS) acuity, whether the precision of the ANS is crucial for the development of symbolic numerical abilities (i.e., scaffolding hypothesis) and/or whether the experience with symbolic number processing refines the ANS (i.
View Article and Find Full Text PDFThe aim of the study was to investigate how high math-anxious (HMA) individuals react to errors in an arithmetic task. Twenty HMA and 19 low math-anxious (LMA) individuals were presented with a multi-digit addition verification task and were given response feedback. Post-error adjustment measures (response time and accuracy) were analyzed in order to study differences between groups when faced with errors in an arithmetical task.
View Article and Find Full Text PDFAttentional bias toward threatening or emotional information is considered a cognitive marker of anxiety, and it has been described in various clinical and subclinical populations. This study used an emotional Stroop task to investigate whether math anxiety is characterized by an attentional bias toward math-related words. Two previous studies failed to observe such an effect in math-anxious individuals, although the authors acknowledged certain methodological limitations that the present study seeks to avoid.
View Article and Find Full Text PDFCogn Affect Behav Neurosci
February 2016
A decade has passed since the last published review of math anxiety, which was carried out by Ashcraft and Ridley (2005). Given the considerable interest aroused by this topic in recent years and the growing number of publications related to it, the present article aims to provide a full and updated review of the field, ranging from the initial studies of the impact of math anxiety on numerical cognition, to the latest research exploring its electrophysiological correlates and brain bases from a cognitive neuroscience perspective. Finally, this review describes the factors and mechanisms that have been claimed to play a role in the origins and/or maintenance of math anxiety, and it examines in detail the main explanations proposed to account for the negative effects of math anxiety on performance: competition for working memory resources, a deficit in a low-level numerical representation, and inhibition/attentional control deficit.
View Article and Find Full Text PDFNumerical comparison tasks are widely used to study the mental representation of numerical magnitude. In study, event-related brain potentials (ERPs) were recorded while 26 high math-anxious (HMA) and 27 low math-anxious (LMA) individuals were presented with pairs of single-digit Arabic numbers and were asked to decide which one had the larger numerical magnitude. The size of the numbers and the distance between them were manipulated in order to study the size and the distance effects.
View Article and Find Full Text PDFThis study uses event-related brain potentials (ERPs) to investigate the electrophysiological correlates of numeric conflict monitoring in math-anxious individuals, by analyzing whether math anxiety is related to abnormal processing in early conflict detection (as shown by the N450 component) and/or in a later, response-related stage of processing (as shown by the conflict sustained potential; Conflict-SP). Conflict adaptation effects were also studied by analyzing the effect of the previous trial's congruence in current interference. To this end, 17 low math-anxious (LMA) and 17 high math-anxious (HMA) individuals were presented with a numerical Stroop task.
View Article and Find Full Text PDFThis study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA) and seventeen low math-anxious (LMA) individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety.
View Article and Find Full Text PDFThis paper focuses on the capacity to solve numerical incongruities in high- and lower-skilled arithmetic problem-solvers by investigating event-related brain potentials elicited by incorrect solutions to additions. Fifteen high-skill and fifteen low-skill individuals were presented with simple addition problems in a verification task. The proposed solution was manipulated by presenting correct solutions and incorrect solutions very close to the correct ones.
View Article and Find Full Text PDF