Publications by authors named "Macarena Pirez Schirmer"

The development of simple, reliable, and cost-effective methods is critically important to study the spatial and temporal variation of microcystins (MCs) in the food chain. Nanobodies (Nbs), antigen binding fragments from camelid antibodies, present valuable features for analytical applications. Their small antigen binding site offers a focused recognition of small analytes, reducing spurious cross-reactivity and matrix effects.

View Article and Find Full Text PDF

Over the last two decades, the variable domains from heavy chain-only antibodies in camelids (nanobodies) have emerged as valuable immunoreagents for analytical and diagnostic applications. One prominent use of nanobodies is for the detection of small molecules due to their ease of production, resistance to solvents used in sample extraction, facile genetic manipulation, and small size. These last two properties make it possible to produce biotinylated nanobodies in vivo, which can be loaded in an orientated manner on magnetic beads covered with avidin, creating high-density immunoadsorbenpi twbch ""ts.

View Article and Find Full Text PDF

Freshwater harmful algal blooms produce a broad array of bioactive compounds, with variable polarity. Acute exposure to cyanotoxins can impact the liver, nervous system, gastrointestinal tract, skin, and immune function. Increasing evidence suggests chronic effects from low-level exposures of cyanotoxins and other associated bioactive metabolites of cyanobacterial origin.

View Article and Find Full Text PDF

Here we present a new analytical method where immunoconcentration of the analyte is coupled to quantitative matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) analysis allowing in minutes the identification and highly sensitive quantitation of microcystins (MCs) as model targets. The key element is a site-specific biotinylated nanobody of broad cross-reactivity with microcystins. The single biotin moiety at the C-terminus and the small size of the nanobody (15 kDa) enable its oriented and tightly packed immobilization on magnetic beads, providing a highly efficient capture of the toxin.

View Article and Find Full Text PDF

Owing to their reproducibility, stability, and cost-effective production, the recombinant variable domains of heavy-chain-only antibodies (VHHs) are becoming a salient option as immunoassay reagents. Recently, there have been several reports describing their application to the detection of small molecules (haptens). However, lacking the heavy-light chain interface of conventional antibodies, VHHs are not particularly apt to bind small analytes and failures are not uncommon.

View Article and Find Full Text PDF

The freshwater cyanotoxins, microcystins (MCs), pose a global public health threat as potent hepatotoxins in cyanobacterial blooms; their persistence in drinking and recreational water has been associated with potential chronic effects in addition to acute intoxications. Rapid and accurate detection of the over 80 structural congeners is challenged by the rigorous and time consuming clean up required to overcome interference found in raw water samples. MALDI-MS has shown promise for rapid quantification of individual congeners in raw water samples, with very low operative cost, but so far limited sensitivity and lack of available and versatile internal standards (ISs) has limited its use.

View Article and Find Full Text PDF