Publications by authors named "Macarena Martinez-Bailen"

A novel stereoselective synthetic approach to pentahydroxyazepane iminosugars is described. The strategy relies on a key osmium-catalyzed aminohydroxylation reaction of allylic alcohols obtained via addition of vinylmagnesium bromide to a d-mannose-derived aldehyde, which forms the new C-N bond with complete regio- and stereocontrol according to the tethering approach. Subsequent intramolecular reductive amination afforded the desired azepanes.

View Article and Find Full Text PDF

Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities.

View Article and Find Full Text PDF
Article Synopsis
  • NAPRT is a key enzyme in the NAD biosynthetic pathway and serves as a crucial biomarker for the effectiveness of NAMPT inhibitors in cancer therapy.
  • High levels of NAPRT can lead to resistance against NAMPT inhibition, but targeting both enzymes simultaneously shows promising anti-tumor effects.
  • A series of compounds were identified that effectively inhibit NAPRT, demonstrating potential for enhanced cancer treatment when used alongside NAMPT inhibitors like FK866, specifically reducing NAD levels and increasing cell death in ovarian cancer cells.
View Article and Find Full Text PDF

Pharmaceutical chaperones (PCs) are small compounds able to bind and stabilize misfolded proteins, allowing them to recover their native folding and thus their biological activity. In particular, lysosomal storage disorders (LSDs), a class of metabolic disorders due to genetic mutations that result in misfolded lysosomal enzymes, can strongly benefit from the use of PCs able to facilitate their translocation to the lysosomes. This results in a recovery of their catalytic activity.

View Article and Find Full Text PDF

Concerned by the urgent need to explore new approaches for the treatment of Alzheimer's disease, we herein describe the synthesis and evaluation of new multitarget molecules. In particular, we have focused our attention on modulating the activity of cholinesterases (AChE, BuChE) in order to restore the levels of the neurotransmitter acetylcholine, and of O-GlcNAcase (OGA), which is associated with hyperphosphorylation of tau protein, in turn related to the formation of neurofibrillary tangles in the brain. Specifically, we considered the possibility of using carbohydrate-fused 1,3-selenazolines, decorated with a 2-alkylamino or 2-alkoxy moieties.

View Article and Find Full Text PDF

Two libraries of mono- and dimeric pyrrolidine iminosugars were synthesized by CuAAC and (thio)urea-bond-forming reactions from the respective azido/aminohexylpyrrolidine iminosugar precursors. The resulting monomeric and dimeric compounds were screened for inhibition of β-N-acetylglucosaminidase from Jack beans, the plant ortholog of human lysosomal hexosaminidases. A selection of the best inhibitors of these libraries was then evaluated against human lysosomal β-N-acetylhexosaminidase B (hHexB) and human nucleocytoplasmic β-N-acetylglucosaminidase (hOGA).

View Article and Find Full Text PDF

We report a straightforward synthetic strategy for the preparation of trihydroxypiperidine azasugars decorated with lipophilic chains at both the nitrogen and the adjacent carbon as potential inhibitors of the lysosomal enzyme glucocerebrosidase (GCase), which is involved in Gaucher disease. The procedure relies on the preparation of -erythrosyl -alkylated nitrones through reaction of aldehyde and primary amines followed by oxidation of the imines formed with the methyltrioxorhenium catalyst and urea hydrogen peroxide. The addition of octylMgBr to nitrone provided access to both epimeric hydroxylamines and with opposite configuration at the newly created stereocenter in a stereodivergent and completely stereoselective way, depending on the absence or presence of BF·EtO.

View Article and Find Full Text PDF

Pharmacological chaperones (PCs) are small compounds able to rescue the activity of mutated lysosomal enzymes when used at subinhibitory concentrations. Nitrogen-containing glycomimetics such as aza- or iminosugars are known to behave as PCs for lysosomal storage disorders (LSDs). As part of our research into lysosomal sphingolipidoses inhibitors and looking in particular for new β-galactosidase inhibitors, we report the synthesis of a series of alkylated azasugars with a relative "" configuration at the hydroxy/amine-substituted stereocenters.

View Article and Find Full Text PDF

Ligand-based NMR techniques to study protein-ligand interactions are potent tools in drug design. Saturation transfer difference (STD) NMR spectroscopy stands out as one of the most versatile techniques, allowing screening of fragments libraries and providing structural information on binding modes. Recently, it has been shown that a multi-frequency STD NMR approach, differential epitope mapping (DEEP)-STD NMR, can provide additional information on the orientation of small ligands within the binding pocket.

View Article and Find Full Text PDF
Article Synopsis
  • A chemical library of multimeric pyrrolidine-based iminosugars was synthesized using CuAAC, incorporating three pairs of epimeric pyrrolidine-azides into various alkyne structures for testing.
  • These new compounds were found to effectively inhibit the enzymes α-galactosidase A (α-Gal A) and β-glucocerebrosidase (GCase), with one nonavalent compound showing a remarkable 375-fold increase in potency compared to the monovalent reference.
  • The most effective α-Gal A inhibitors were also tested in fibroblasts from Fabry disease patients, demonstrating a 5.2-fold increase in enzyme activity, indicating their potential as
View Article and Find Full Text PDF

The synthesis of multivalent pyrrolidine iminosugars via CuAAC click reaction between different pyrrolidine-azide derivatives and tri- or hexavalent alkynyl scaffolds is reported. The new multimeric compounds, together with the monomeric reference, were evaluated as inhibitors against two homologous GH1 β-glucosidases (BglA and BglB from Paenibacillus polymyxa). The multivalent inhibitors containing an aromatic moiety in the linker between the pyrrolidine and the scaffold inhibited the octameric BglA (µM range) but did not show affinity against the monomeric BglB, despite the similarity between the active site of both enzymes.

View Article and Find Full Text PDF

The synthesis of a library of pyrrolidine-aryltriazole hybrids through CuAAC between two epimeric dihydroxylated azidomethylpyrrolidines and differently substituted phenylacetylenes is reported. The evaluation of the new compounds as inhibitors of lysosomal β-glucocerebrosidase showed the importance of the substitution pattern of the phenyl moiety in the inhibition. Crystallization and docking studies revealed key interactions of the pyrrolidine motif with aminoacid residues of the catalytic site while the aryltriazole moiety extended along a hydrophobic surface groove.

View Article and Find Full Text PDF

The preliminary screening of two libraries of epimeric (pyrrolidin-2-yl)triazoles (14a-s and 22a-s), generated via click chemistry, allowed the rapid identification of four α-galactosidase (coffee beans) inhibitors (22b,k,p,r) and two β-glucosidase (almond) inhibitors (14b,f) in the low μM range. The additional biological analysis of 14b,f towards β-glucocerebrosidase (human lysosomal β-glucosidase), as target enzyme for Gaucher disease, showed a good correlation with the inhibition results obtained for the plant (almond) enzyme. Surprisingly, although these compounds showed inhibition towards β-glucocerebrosidase as acid hydrolase, they did not inhibit bovine liver β-glucosidase as neutral hydrolase.

View Article and Find Full Text PDF