Objective: To study the efficacy of mitochondrial activator BGP-15 to preserve sperm quality and competence against cellular damage.
Design: Spermatozoa from mice or humans were treated in vitro with BGP-15 and sperm quality markers assessed. Spermatozoa from young (8-12 weeks old) or reproductively old (>14 months old) mice were treated with BGP-15 for 1h and assessed for sperm quality and pre-implantation embryo development after in vitro fertilization (IVF).
Normal reproductive function and fertility is considered a "sixth vital sign" because disruptions to this sensitive physiological system can forewarn other health issues, including exposure to environmental toxicants. We found that female mice exhibited profound loss of embryos during pre-implantation and fetal development coincident with a change to the source of their drinking water. When female mice were provided with tap water from the building in which they were housed (Water 2), instead of tap water from a neighboring building which was their previous supply (Water 1), ovulated oocytes were degenerated or had impaired meiotic maturation, and failed to form embryos.
View Article and Find Full Text PDFIn Brief: Aging in men is associated with diminished sperm quality and a higher incidence of altered fetal development and miscarriage in resultant pregnancies. This study in mice identifies a therapeutic compound that, when administered to aged males, improves sperm quality, subsequent embryo development and post-natal offspring health.
Abstract: Aging in men is associated with diminished sperm quality and a higher incidence of altered fetal development and miscarriage in resultant pregnancies.
Mitochondria undergo a myriad of changes during pre-implantation embryo development, including shifts in activity levels and mitochondrial DNA (mtDNA) replication. However, how these distinct aspects of mitochondrial function are linked and their responsiveness to diverse stressors is not well understood. Here, we show that mtDNA content increased between 8-cell embryos and the blastocyst stage, with similar copy numbers per cell in the inner cell mass (ICM) and trophectoderm (TE).
View Article and Find Full Text PDFIn Brief: Reactive oxygen species are generated throughout the pre-implantation period and are necessary for normal embryo formation. However, at pathological levels, they result in reduced embryo viability which can be mediated through factors delivered by sperm and eggs at conception or from the external environment.
Abstract: Reactive oxygen species (ROS) occur naturally in pre-implantation embryos as a by-product of ATP generation through oxidative phosphorylation and enzymes such as NADPH oxidase and xanthine oxidase.
The prevalence of obesity in adults worldwide, and specifically in women of reproductive age, is concerning given the risks to fertility posed by the increased risk of type 2 diabetes, metabolic syndrome, and other noncommunicable diseases. Obesity has a multi-systemic impact in female physiology that is characterized by the presence of oxidative stress, lipotoxicity, and the activation of pro-inflammatory pathways, inducing tissue-specific insulin resistance and ultimately conducive to abnormal ovarian function. A higher body mass is linked to Polycystic Ovary Syndrome, dysregulated menstrual cycles, anovulation, and longer time to pregnancy, even in ovulatory women.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are important players in cell to cell communication in reproductive systems. Notably, EVs have been found and characterized in the male reproductive tract, however, direct functional evidence for their importance in mediating sperm function is lacking. We have previously demonstrated that Arrdc4, a member of the α-arrestin protein family, is involved in extracellular vesicle biogenesis and release.
View Article and Find Full Text PDFPolycystic ovary syndrome (PCOS) is a common cause of female infertility. Hyperandrogenism is both a major symptom and key diagnostic trait of PCOS; however, the direct impact of this androgen excess on ovarian dynamics is unclear. By combining a DHT-induced PCOS mouse model with an ex vivo follicle culture system, we investigated the impact of hyperandrogenism on ovarian function.
View Article and Find Full Text PDFThe detrimental consequences of obesity on female fertility are well known, but the functional changes that occur in the ovary in response to elevated BMI are not clear. Obesity induces multiple components of a systemic inflammatory state that is a key pathway by which it initiates tissue dysfunction in adipose, liver and muscle; however whether obesity induces similar inflammatory changes in the ovary has not been fully investigated. This is important to understand because it is increasingly clear that obesity at conception impacts not only pregnancy rates but also influences pre-implantation embryo development.
View Article and Find Full Text PDFProblem: The nuclear progesterone receptor (PGR) transcription factor is essential for ovulation; however, the exact mechanisms by which PGR controls ovulation are not known. The aim of this study was to determine whether PGR regulates inflammatory mediators in the ovary.
Method Of Study: Ovaries from mice lacking PGR (PRKO) and heterozygous PR+/- littermates were subjected to microarray analysis of a large panel of inflammatory genes.
Diabetes has been linked with impaired fertility but the underlying mechanisms are not well defined. Here we use a streptozotocin-induced diabetes mouse model to investigate the cellular and biochemical changes in conceptus and maternal tissues that accompany hyperglycaemia. We report that streptozotocin treatment before conception induces profound intra-cellular protein β-O-glycosylation (O-GlcNAc) in the oviduct and uterine epithelium, prominent in early pregnancy.
View Article and Find Full Text PDF