Publications by authors named "MacLean C Sellars"

Background: Minimally invasive molecular profiling using cell-free DNA (cfDNA) is increasingly important to the management of cancer patients; however, low sensitivity remains a major limitation, particularly for brain tumor patients. Transiently attenuating cfDNA clearance from the body-thereby, allowing more cfDNA to be sampled-has been proposed to improve the performance of liquid biopsy diagnostics. However, there is a paucity of clinical data on the effect of higher cfDNA recovery.

View Article and Find Full Text PDF

This is the first case of Cancer Morbidity, Mortality, and Improvement Rounds, a series of articles intended to explore the unique safety risks experienced by oncology patients through the lens of quality improvement, systems and human factors engineering, and cognitive psychology. This case highlights how multiple overlapping factors contributed to a delay in diagnosing disseminated tuberculosis in a patient with lung cancer. The discussion focuses on the ways that cognitive biases contributed to the delayed diagnosis in a patient who, with the benefit of hindsight, exhibited several signs and symptoms suggesting tuberculosis.

View Article and Find Full Text PDF

Cancer vaccines aim to direct the immune system to eradicate cancer cells. Here we review the essential immunologic concepts underpinning natural immunity and highlight the multiple unique challenges faced by vaccines targeting cancer. Recent technological advances in mass spectrometry, neoantigen prediction, genetically and pharmacologically engineered mouse models, and single-cell omics have revealed new biology, which can help to bridge this divide.

View Article and Find Full Text PDF

The orphan steroid receptor, Nur77, is thought to be a central participant in events leading to TCR-mediated clonal deletion of immature thymocytes. Interestingly, although both immature and mature murine T cell populations rapidly up-regulate Nur77 after TCR stimulation, immature CD4+CD8+ thymocytes respond by undergoing apoptosis, whereas their mature descendants respond by dividing. To understand these developmental differences in susceptibility to the proapoptotic potential of Nur77, we compared its regulation and compartmentalization and show that mature, but not immature, T cells hyperphosphorylate Nur77 in response to TCR signals.

View Article and Find Full Text PDF