Objectives: To investigate associations between sociodemographic factors, pre-existing chronic comorbidities, and general practitioner-led diagnosis of long COVID.
Design, Setting, Patients: We conducted a retrospective observational case-control study using de-identified electronic general practice data, recorded between January 2020 and March 2023, from 869 general practice clinics across four primary health networks in Victoria and New South Wales.
Main Outcome Measures: Sociodemographic factors and pre-existing chronic comorbidities associated with general practitioner-led diagnosis of long COVID.
Stretching an elastic material along one axis typically induces contraction along the transverse axes, a phenomenon known as the Poisson effect. From these strains, one can compute the specific volume, which generally either increases or, in the incompressible limit, remains constant as the material is stretched. However, in networks of semiflexible or stiff polymers, which are typically highly compressible yet stiffen significantly when stretched, one instead sees a significant reduction in specific volume under finite strains.
View Article and Find Full Text PDFStrain-controlled criticality governs the elasticity of jamming and fiber networks. While the upper critical dimension of jamming is believed to be d_{u}=2, non-mean-field exponents are observed in numerical studies of 2D and 3D fiber networks. The origins of this remains unclear.
View Article and Find Full Text PDFThe paramagnetism of f-block ions has been exploited in chiral shift reagents and magnetic resonance imaging, but these applications tend to focus on H NMR shifts as paramagnetic broadening makes less sensitive nuclei more difficult to study. Here we report a solution and solid-state (ss) Si NMR study of an isostructural series of locally -symmetric early f-block metal(III) -hypersilanide complexes, [M{Si(SiMe)}(THF)] (; M = La, Ce, Pr, Nd, U); were also characterized by single crystal and powder X-ray diffraction, EPR, ATR-IR, and UV-vis-NIR spectroscopies, SQUID magnetometry, and elemental analysis. Only one SiMe signal was observed in the Si ssNMR spectra of , while two SiMe signals were seen in solution Si NMR spectra of and .
View Article and Find Full Text PDFFibrous networks such as collagen are common in biological systems. Recent theoretical and experimental efforts have shed light on the mechanics of single component networks. Most real biopolymer networks, however, are composites made of elements with different rigidity.
View Article and Find Full Text PDFAt zero temperature, spring networks with connectivity below Maxwell's isostatic threshold undergo a mechanical phase transition from a floppy state at small strains to a rigid state for applied shear strain above a critical strain threshold. Disordered networks in the floppy mechanical regime can be stabilized by entropic effects at finite temperature. We develop a scaling theory for this mechanical phase transition at finite temperature, yielding relationships between various scaling exponents.
View Article and Find Full Text PDFContractility in animal cells is often generated by molecular motors such as myosin, which require polar substrates for their function. Motivated by recent experimental evidence of motor-independent contractility, we propose a robust motor-free mechanism that can generate contraction in biopolymer networks without the need for substrate polarity. We show that contractility is a natural consequence of active binding-unbinding of crosslinkers that breaks the principle of detailed balance, together with the asymmetric force-extension response of semiflexible biopolymers.
View Article and Find Full Text PDFNetworks and dense suspensions frequently reside near a boundary between soft (or fluidlike) and rigid (or solidlike) regimes. Transitions between these regimes can be driven by changes in structure, density, or applied stress or strain. In general, near the onset or loss of rigidity in these systems, dissipation-limiting heterogeneous nonaffine rearrangements dominate the macroscopic viscoelastic response, giving rise to diverging relaxation times and power-law rheology.
View Article and Find Full Text PDFNetworks of stiff fibers govern the elasticity of biological structures such as the extracellular matrix of collagen. These networks are known to stiffen nonlinearly under shear or extensional strain. Recently, it has been shown that such stiffening is governed by a strain-controlled athermal but critical phase transition, from a floppy phase below the critical strain to a rigid phase above the critical strain.
View Article and Find Full Text PDFNetworks of semiflexible or stiff polymers such as most biopolymers are known to deform inhomogeneously when sheared. The effects of such nonaffine deformation have been shown to be much stronger than for flexible polymers. To date, our understanding of nonaffinity in such systems is limited to simulations or specific 2D models of athermal fibers.
View Article and Find Full Text PDFBiopolymer networks are common in biological systems from the cytoskeleton of individual cells to collagen in the extracellular matrix. The mechanics of these systems under applied strain can be explained in some cases by a phase transition from soft to rigid states. For collagen networks, it has been shown that this transition is critical in nature and it is predicted to exhibit diverging fluctuations near a critical strain that depends on the network's connectivity and structure.
View Article and Find Full Text PDFDisordered networks of semiflexible filaments are common support structures in biology. Familiar examples include fibrous matrices in blood clots, bacterial biofilms, and essential components of cells and tissues of plants, animals, and fungi. Despite the ubiquity of these networks in biomaterials, we have only a limited understanding of the relationship between their structural features and their highly strain-sensitive mechanical properties.
View Article and Find Full Text PDFStudying the Brownian motion of fibers and semi-flexible filaments in porous media is the key to understanding the transport and mechanical properties in a variety of systems. The motion of semi-flexible filaments in gel-like porous media including polymer networks and cell cytoskeleton has been studied theoretically and experimentally, whereas the motion of these materials in packed-colloid porous media, advanced foams, and rock-like systems has not been thoroughly studied. Here we use video microscopy to directly visualize the reptation and transport of intrinsically fluorescent, semiflexible, semiconducting single-walled carbon nanotubes (SWCNTs) in the sub-micron pores of packed colloids as fixed obstacles of packed-colloid porous media.
View Article and Find Full Text PDFIn this work, we investigate whether stiffening in compression is a feature of single cells and whether the intracellular polymer networks that comprise the cytoskeleton (all of which stiffen with increasing shear strain) stiffen or soften when subjected to compressive strains. We find that individual cells, such as fibroblasts, stiffen at physiologically relevant compressive strains, but genetic ablation of vimentin diminishes this effect. Further, we show that unlike networks of purified F-actin or microtubules, which soften in compression, vimentin intermediate filament networks stiffen in both compression and extension, and we present a theoretical model to explain this response based on the flexibility of vimentin filaments and their surface charge, which resists volume changes of the network under compression.
View Article and Find Full Text PDFThe mechanical properties of soft materials can be probed on small length scales by microrheology. A common approach tracks fluctuations of micrometer-sized beads embedded in the medium to be characterized. This approach yields results that depend on probe size when the medium has structure on comparable length scales.
View Article and Find Full Text PDFA long-standing puzzle in the rheology of living cells is the origin of the experimentally observed long-time stress relaxation. The mechanics of the cell is largely dictated by the cytoskeleton, which is a biopolymer network consisting of transient crosslinkers, allowing for stress relaxation over time. Moreover, these networks are internally stressed due to the presence of molecular motors.
View Article and Find Full Text PDFWe investigate the rheological properties of interpenetrating networks reconstituted from the main cytoskeletal components: filamentous actin, microtubules, and vimentin intermediate filaments. The elastic modulus is determined largely by actin, with little contribution from either microtubules or vimentin. However, vimentin dramatically impacts the relaxation, with even small amounts significantly increasing the relaxation time of the interpenetrating network.
View Article and Find Full Text PDFWhen subject to applied strain, fiber networks exhibit nonlinear elastic stiffening. Recent theory and experiments have shown that this phenomenon is controlled by an underlying mechanical phase transition that is critical in nature. Growing simulation evidence points to non-mean-field behavior for this transition and a hyperscaling relation has been proposed to relate the corresponding critical exponents.
View Article and Find Full Text PDFCarbon nanotubes (CNTs) are stiff, all-carbon macromolecules with diameters as small as one nanometer and few microns long. Solutions of CNTs in chlorosulfonic acid (CSA) follow the phase behavior of rigid rod polymers interacting via a repulsive potential and display a liquid crystalline phase at sufficiently high concentration. Here, we show that small-angle X-ray scattering and polarized light microscopy data can be combined to characterize quantitatively the morphology of liquid crystalline phases formed in CNT solutions at concentrations from 3 to 6.
View Article and Find Full Text PDFFibrin is the main component of blood clots. The mechanical properties of fibrin are therefore of critical importance in successful hemostasis. One of the divalent cations released by platelets during hemostasis is Zn; however, its effect on the network structure of fibrin gels and on the resultant mechanical properties remains poorly understood.
View Article and Find Full Text PDFAnimal cells form contractile structures to promote various functions, from cell motility to cell division. Force generation in these structures is often due to molecular motors such as myosin that require polar substrates for their function. Here, we propose a motor-free mechanism that can generate contraction in biopolymer networks without the need for polarity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2020
Tissues commonly consist of cells embedded within a fibrous biopolymer network. Whereas cell-free reconstituted biopolymer networks typically soften under applied uniaxial compression, various tissues, including liver, brain, and fat, have been observed to instead stiffen when compressed. The mechanism for this compression-stiffening effect is not yet clear.
View Article and Find Full Text PDFFibrous networks such as collagen are common in physiological systems. One important function of these networks is to provide mechanical stability for cells and tissues. At physiological levels of connectivity, such networks would be mechanically unstable with only central-force interactions.
View Article and Find Full Text PDFUnder extensional strain, fiber networks can exhibit an anomalously large and nonlinear Poisson effect accompanied by a dramatic transverse contraction and volume reduction for applied strains as small as a few percent. We demonstrate that this phenomenon is controlled by a collective mechanical phase transition that occurs at a critical uniaxial strain that depends on network connectivity. This transition is punctuated by an anomalous peak in the apparent Poisson's ratio and other critical signatures such as diverging nonaffine strain fluctuations.
View Article and Find Full Text PDFNetworks of filamentous actin (F-actin) are important for the mechanics of most animal cells. These cytoskeletal networks are highly dynamic, with a variety of actin-associated proteins that control cross-linking, polymerization and force generation in the cytoskeleton. Inspired by recent rheological experiments on reconstituted solutions of dynamic actin filaments, we report a theoretical model that describes stress relaxation behavior of these solutions in the presence of severing proteins.
View Article and Find Full Text PDF