Publications by authors named "MacGrogan D"

Article Synopsis
  • The cardiac outflow tract (OFT) is essential for linking the heart's ventricles to the arteries and can develop abnormalities like bicuspid aortic valve (BAV), often due to GATA6 gene mutations.
  • Researchers created a mouse model (Gata6STOP/+) using CRISPR-Cas9 that displayed high rates of BAV and other heart defects, demonstrating significant issues in cardiovascular cell behavior and development.
  • The study found that GATA6 plays a crucial role in heart formation, particularly through pathways involving CXCR7, with abnormalities in cell migration and proliferation linked to the observed defects in OFT development.
View Article and Find Full Text PDF

Genome-wide association studies and experimental mouse models implicate the and genes in congenital heart disease (CHD). Their close physical proximity and conserved synteny suggest that these two genes might be involved in analogous cardiac developmental processes. Heterozygous loss-of-function mutations alone or humanized mutations in a NOTCH1-sensitized genetic background cause bicuspid aortic valve (BAV) and a membranous ventricular septal defect (VSD), consistent with MIB1 and NOTCH1 functioning in the same pathway.

View Article and Find Full Text PDF

Background: Cardiac ventricles provide the contractile force of the beating heart throughout life. How the primitive endocardium-layered myocardial projections called trabeculae form and mature into the adult ventricles is of great interest for biology and regenerative medicine. Trabeculation is dependent on the signaling protein Nrg1 (neuregulin-1).

View Article and Find Full Text PDF

Importance: Nonsyndromic bicuspid aortic valve (nsBAV) is the most common congenital heart valve malformation. BAV has a heritable component, yet only a few causative genes have been identified; understanding BAV genetics is a key point in developing personalized medicine.

Objective: To identify a new gene for nsBAV.

View Article and Find Full Text PDF

Coronary Artery Fistulae (CAFs) are cardiac congenital anomalies consisting of an abnormal communication of a coronary artery with either a cardiac chamber or another cardiac vessel. In humans, these congenital anomalies can lead to complications such as myocardial hypertrophy, endocarditis, heart dilatation, and failure. Unfortunately, despite their clinical relevance, the aetiology of CAFs remains unknown.

View Article and Find Full Text PDF

Background: The complex genetics underlying human cardiac disease is evidenced by its heterogenous manifestation, multigenic basis, and sporadic occurrence. These features have hampered disease modeling and mechanistic understanding. Here, we show that 2 structural cardiac diseases, left ventricular noncompaction (LVNC) and bicuspid aortic valve, can be caused by a set of inherited heterozygous gene mutations affecting the NOTCH ligand regulator MIB1 (MINDBOMB1) and cosegregating genes.

View Article and Find Full Text PDF

Mutations in the G protein–coupled receptor cause human diseases, including defective peripheral nervous system (PNS) myelination. To study GPR126 function, we generated new genetic mice and zebrafish models. Murine is expressed in developing heart endocardium, and global inactivation is embryonically lethal, with mutants having thin-walled ventricles but unaffected heart patterning or maturation.

View Article and Find Full Text PDF

Bone morphogenetic protein (Bmp) signaling is critical for organismal development and homeostasis. To elucidate Bmp2 function in the vascular/hematopoietic lineages we generated a new transgenic mouse line in which ectopic Bmp2 expression is controlled by the Tie2 promoter. Tie2;Bmp2 mice develop aortic valve dysfunction postnatally, accompanied by pre-calcific lesion formation in valve leaflets.

View Article and Find Full Text PDF

Objective: Atheromatous fibrous caps are produced by smooth muscle cells (SMCs) that are recruited to the subendothelial space. We tested whether the recruitment mechanisms are the same as in embryonic artery development, which relies prominently on Notch signaling to form the subendothelial medial SMC layers.

Approach And Results: Notch elements were expressed in regions of fibrous cap in human and mouse plaques.

View Article and Find Full Text PDF

Calcific aortic valve disease (CAVD) is a significant cause of illness and death worldwide. Identification of early predictive markers could help optimize patient management. RNA-sequencing was carried out on human fetal aortic valves at gestational , , and and on a case-control study with adult noncalcified and calcified bicuspid and tricuspid aortic valves.

View Article and Find Full Text PDF

Coronaries are essential for myocardial growth and heart function. Notch is crucial for mouse embryonic angiogenesis, but its role in coronary development remains uncertain. We show Jag1, Dll4 and activated Notch1 receptor expression in sinus venosus (SV) endocardium.

View Article and Find Full Text PDF

Cardiogenesis is a complex developmental process involving multiple overlapping stages of cell fate specification, proliferation, differentiation, and morphogenesis. Precise spatiotemporal coordination between the different cardiogenic processes is ensured by intercellular signalling crosstalk and tissue-tissue interactions. Notch is an intercellular signalling pathway crucial for cell fate decisions during multicellular organismal development and is aptly positioned to coordinate the complex signalling crosstalk required for progressive cell lineage restriction during cardiogenesis.

View Article and Find Full Text PDF

Abnormalities of the arterial valve leaflets, predominantly bicuspid aortic valve, are the commonest congenital malformations. Although many studies have investigated the development of the arterial valves, it has been assumed that, as with the atrioventricular valves, endocardial to mesenchymal transition (EndMT) is the predominant mechanism. We show that arterial is distinctly different from atrioventricular valve formation.

View Article and Find Full Text PDF

Aim: To determine the role of NOTCH during the arterial injury response and the subsequent chronic arterial-wall inflammation underlying atherosclerosis.

Methods And Results: We have generated a mouse model of endothelial-specific (Cdh5-driven) depletion of the Notch effector recombination signal binding protein for immunoglobulin kappa J region (RBPJ) [(ApoE-/-); homozygous RBPJk conditional mice (RBPJflox/flox); Cadherin 5-CreERT, tamoxifen inducible driver mice (Cdh5-CreERT)]. Endothelial-specific deletion of RBPJ or systemic deletion of Notch1 in athero-susceptible ApoE-/- mice fed a high-cholesterol diet for 6 weeks resulted in reduced atherosclerosis in the aortic arch and sinus.

View Article and Find Full Text PDF

Rationale: The Notch signaling pathway is crucial for primitive cardiac valve formation by epithelial-mesenchymal transition, and NOTCH1 mutations cause bicuspid aortic valve; however, the temporal requirement for the various Notch ligands and receptors during valve ontogeny is poorly understood.

Objective: The aim of this study is to determine the functional specificity of Notch in valve development.

Methods And Results: Using cardiac-specific conditional targeted mutant mice, we find that endothelial/endocardial deletion of Mib1-Dll4-Notch1 signaling, possibly favored by Manic-Fringe, is specifically required for cardiac epithelial-mesenchymal transition.

View Article and Find Full Text PDF

The Notch signaling pathway is an ancient and highly conserved signaling pathway that controls cell fate specification and tissue patterning in the embryo and in the adult. Region-specific endocardial Notch activity regulates heart morphogenesis through the interaction with multiple myocardial-, epicardial-, and neural crest-derived signals. Mutations in NOTCH signaling elements cause congenital heart disease in humans and mice, demonstrating its essential role in cardiac development.

View Article and Find Full Text PDF

Cardiac valve disease is a significant cause of ill health and death worldwide, and valve replacement remains one of the most common cardiac interventions in high-income economies. Despite major advances in surgical treatment, long-term therapy remains inadequate because none of the current valve substitutes have the potential for remodeling, regeneration, and growth of native structures. Valve development is coordinated by a complex interplay of signaling pathways and environmental cues that cause disease when perturbed.

View Article and Find Full Text PDF

The Notch signalling pathway plays crucial roles in cardiac development and postnatal cardiac homoeostasis. Gain- and loss-of-function approaches indicate that Notch promotes or inhibits cardiogenesis in a stage-dependent manner. However, the molecular mechanisms are poorly defined because many downstream effectors remain to be identified.

View Article and Find Full Text PDF

Left ventricular noncompaction (LVNC) causes prominent ventricular trabeculations and reduces cardiac systolic function. The clinical presentation of LVNC ranges from asymptomatic to heart failure. We show that germline mutations in human MIB1 (mindbomb homolog 1), which encodes an E3 ubiquitin ligase that promotes endocytosis of the NOTCH ligands DELTA and JAGGED, cause LVNC in autosomal-dominant pedigrees, with affected individuals showing reduced NOTCH1 activity and reduced expression of target genes.

View Article and Find Full Text PDF

The Notch pathway is an intercellular signaling mechanism involved in multiple cell-to-cell communication processes that regulate cell fate specification, differentiation, and tissue patterning during embryogenesis and adulthood. Functional studies in the mouse have shown that a Hey-Bmp2 regulatory circuit restricts Bmp2 expression to presumptive valve myocardium (atrioventricular canal and outflow tract). Likewise, a Notch-Hey-Bmp2 axis represses Bmp2 in the endocardium.

View Article and Find Full Text PDF

Objective: Calcific aortic valve disease is similar to atherosclerosis in that both diseases result from chronic inflammation and endothelial dysfunction. Heterozygous NOTCH1 mutations have been associated to calcific aortic disease and a bicuspid aortic valve. We investigated whether mice with genetic inactivation of the Notch signaling pathway are prone to develop valve disease when exposed to a predisposing diet.

View Article and Find Full Text PDF

Rationale: The proepicardium is a transient structure comprising epicardial progenitor cells located at the posterior limit of the embryonic cardiac inflow. A network of signals regulates proepicardial cell fate and defines myocardial and nonmyocardial domains at the venous pole of the heart. During cardiac development, epicardial-derived cells also contribute to coronary vessel morphogenesis.

View Article and Find Full Text PDF

The Notch-signaling pathway is involved in multiple processes during vertebrate cardiac development. Cardiomyocyte differentiation, patterning of the different cardiac regions, valve development, ventricular trabeculation, and outflow tract development have all been shown to depend on the activity of specific Notch-signaling elements. From these studies, it becomes obvious that Notch regulates in a cell autonomous or non-cell autonomous manner different signaling pathways, pointing to a role for Notch as a signal coordinator during cardiogenesis.

View Article and Find Full Text PDF

Lethal 3 malignant brain tumor 1 (L3MBTL1), a homolog of the Drosophila polycomb tumor suppressor l(3)mbt, contains three tandem MBT repeats (3xMBT) that are critical for transcriptional repression. We recently reported that the 3xMBT repeats interact with mono- and dimethylated lysines in the amino termini of histones H4 and H1b to promote methylation-dependent chromatin compaction. Using a series of histone peptides, we now show that the recognition of mono- and dimethylated lysines in histones H3, H4 and H1.

View Article and Find Full Text PDF