Publications by authors named "MacFarland D"

Management of wolves is controversial in many jurisdictions where wolves live, which underscores the importance of rigor, transparency, and reproducibility when evaluating outcomes of management actions. Treves and Louchouarn 2022 (hereafter TL) predicted outcomes for various fall 2021 hunting scenarios following Wisconsin's judicially mandated hunting and trapping season in spring 2021, and concluded that even a zero harvest scenario could result in the wolf population declining below the population goal of 350 wolves specified in the 1999 Wisconsin wolf management plan. TL further concluded that with a fall harvest of > 16 wolves there was a "better than average possibility" that the wolf population size would decline below that 350-wolf threshold.

View Article and Find Full Text PDF

Direct human-caused mortality accounts for about half of all large mammal mortality in North America. For social species like gray wolves (Canis lupus), the death of pack members can disrupt pack structure and cause pack dissolution, and mortality of breeding adults or wolves during reproduction and pup-rearing can decrease pup recruitment. We estimated minimum and maximum probability of wolf pack persistence in Wisconsin, USA, during biological years (15 April-14 April) 2011-2019 and evaluated the influence of pack size and legal harvest mortality on pack persistence during 2012-2014.

View Article and Find Full Text PDF

Habitat selection studies facilitate assessing and predicting species distributions and habitat connectivity, but habitat selection can vary temporally and among individuals, which is often ignored. We used GPS telemetry data from 96 Gray wolves (Canis lupus) in the western Great Lakes region of the USA to assess differences in habitat selection while wolves exhibited resident (territorial) or non-resident (dispersing or floating) movements and discuss implications for habitat connectivity. We used a step-selection function (SSF) to assess habitat selection by wolves exhibiting resident or non-resident movements, and modeled circuit connectivity throughout the western Great Lakes region.

View Article and Find Full Text PDF

Background: Porphyromonas gingivalis (hereafter "Pg") is an oral pathogen that has been hypothesized to act as a keystone driver of inflammation and periodontal disease. Although Pg is most readily recovered from individuals with actively progressing periodontal disease, healthy individuals and those with stable non-progressing disease are also colonized by Pg. Insights into the factors shaping the striking strain-level variation in Pg, and its variable associations with disease, are needed to achieve a more mechanistic understanding of periodontal disease and its progression.

View Article and Find Full Text PDF

Using existing data can be a reliable and cost-effective way to predict species distributions, and particularly useful for recovering or expanding species. We developed a current gray wolf (Canis lupus) distribution model for the western Great Lakes region, USA, and evaluated the spatial transferability of single-state models to the region. This study is the first assessment of transferability in a wide-ranging carnivore, as well as one of few developed for large spatial extents.

View Article and Find Full Text PDF

The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM).

View Article and Find Full Text PDF

Cells release extracellular vesicles (EVs) that can be detected both in vivo and in cell culture medium. Among EVs, exosomes are 50-150 nm vesicles that are systematically packaged into multivesicular bodies for release into the external environment. In cancer, these intentionally packaged exosomes carry a payload of proteins such as RNAs and surface receptors that facilitate the reprogramming of proximal cells to assemble a protumor microenvironment.

View Article and Find Full Text PDF

Strange metal behavior is ubiquitous in correlated materials, ranging from cuprate superconductors to bilayer graphene, and may arise from physics beyond the quantum fluctuations of a Landau order parameter. In quantum-critical heavy-fermion antiferromagnets, such physics may be realized as critical Kondo entanglement of spin and charge and probed with optical conductivity. We present terahertz time-domain transmission spectroscopy on molecular beam epitaxy-grown thin films of YbRhSi, a model strange-metal compound.

View Article and Find Full Text PDF

Managing risk requires an adequate understanding of risk-factors that influence the likelihood of a particular event occurring in time and space. Risk maps can be valuable tools for natural resource managers, allowing them to better understand spatial characteristics of risk. Risk maps can also support risk-avoidance efforts by identifying which areas are relatively riskier than others.

View Article and Find Full Text PDF

Patterns of dispersal behavior are often driven by the composition and configuration of suitable habitat in a matrix of unsuitable habitat. Interactions between animal behavior and landscapes can therefore influence population dynamics, population and species distributions, population genetic structure, and the evolution of behavior. Spatially explicit individual-based models (IBMs) are ideal tools for exploring the effects of landscape structure on dispersal.

View Article and Find Full Text PDF

The addition of boron to GaAs nanowires grown by self-catalyzed molecular beam epitaxy was found to have a strong effect on the nanowire morphology, with axial growth greatly reduced as the nominal boron concentration was increased. Transmission electron microscopy measurements show that the Ga catalyst droplet was unintentionally consumed during growth. Concurrent radial growth, a rough surface morphology and tapering of nanowires grown under boron flux suggest that this droplet consumption is due to reduced Ga adatom diffusion on the nanowire sidewalls in the presence of boron.

View Article and Find Full Text PDF

Population estimation is essential for the conservation and management of fish and wildlife, but accurate estimates are often difficult or expensive to obtain for cryptic species across large geographical scales. Accurate statistical models with manageable financial costs and field efforts are needed for hunted populations and using age-at-harvest data may be the most practical foundation for these models. Several rigorous statistical approaches that use age-at-harvest and other data to accurately estimate populations have recently been developed, but these are often dependent on (a) accurate prior knowledge about demographic parameters of the population, (b) auxiliary data, and (c) initial population size.

View Article and Find Full Text PDF

We demonstrate the on-chip generation of twisted light beams from ring quantum cascade lasers. A monolithic gradient index metamaterial is fabricated directly into the substrate side of the semiconductor chip and induces a twist of the light's wavefront. This significantly influences the obtained beam pattern, which changes from a central intensity minimum to a maximum depending on the discontinuity count of the metamaterial.

View Article and Find Full Text PDF

We report on high-power terahertz quantum cascade lasers based on low effective electron mass InGaAs/InAlAs semiconductor heterostructures with excellent reproducibility. Growth-related asymmetries in the form of interface roughness and dopant migration play a crucial role in this material system. These bias polarity dependent phenomena are studied using a nominally symmetric active region resulting in a preferential electron transport in the growth direction.

View Article and Find Full Text PDF

This study shows the first combination of a ring-shaped vertically emitting quantum cascade laser (riQCL) providing two distinct emission wavelengths combined with a substrate-integrated hollow waveguide (iHWG). This ultra-compact riQCL-iHWG gas sensing device enables the simultaneous detection of two vapor phase species - here, furan and 2-methoxyethanol - providing distinctive absorption features at the emission wavelengths of the riQCL (i.e.

View Article and Find Full Text PDF

The ubiquitous trend toward miniaturized sensing systems demands novel concepts for compact and versatile spectroscopic tools. Conventional optical sensing setups include a light source, an analyte interaction region, and a separate external detector. We present a compact sensor providing room-temperature operation of monolithic surface-active lasers and detectors integrated on the same chip.

View Article and Find Full Text PDF

We present the design simulation and characterization of a quantum cascade detector operating at 4.3μm wavelength. Array integration and packaging processes were investigated.

View Article and Find Full Text PDF

Understanding the conditions that facilitate top predator effects upon mesopredators and prey is critical for predicting where these effects will be significant. Intraguild predation (IGP) and the ecology of fear are hypotheses used to describe the effects of top predators upon mesopredators and prey species, but make different assumptions about organismal space use. The IGP hypothesis predicts that mesopredator resource acquisition and risk are positively correlated, creating a fitness deficit.

View Article and Find Full Text PDF

We present a bi-functional surface emitting and surface detecting mid-infrared device applicable for gas-sensing. A distributed feedback ring quantum cascade laser is monolithically integrated with a detector structured from a bi-functional material for same frequency lasing and detection. The emitted single mode radiation is collimated, back reflected by a flat mirror and detected by the detector element of the sensor.

View Article and Find Full Text PDF

We introduce ring lasers with continuous π-phase shifts in the second order distributed feedback grating. This configuration facilitates insights into the nature of the modal outcoupling in an optical cavity. The grating exploits the asymmetry of whispering gallery modes and induces a rotation of the far field pattern.

View Article and Find Full Text PDF

We report on gallium droplet nucleation on silicon (100) substrates with and without the presence of the native oxide. The gallium deposition is carried out under ultra-high vacuum conditions at temperatures between 580 and 630 °C. The total droplet volume, obtained from a fit to the diameter-density relation, is used for sample analysis on clean silicon surfaces.

View Article and Find Full Text PDF

A diagonal optically active transition in a quantum cascade detector is introduced as optimization parameter to obtain quality factor matching between a photodetector and a cavity. A more diagonal transition yields both higher extraction efficiency and lower noise, while the reduction of the absorption strength is compensated by the resonant cavity. The theoretical limits of such a scheme are obtained, and the impact of losses and cavity processing variations are evaluated.

View Article and Find Full Text PDF

We report on quantum cascade lasers (QCLs) with a tilted facet utilizing their polarization property. Contrary to diode lasers, QCLs generate purely TM polarized light due to the intersubband selection rules. This property enables the utilization of reflectivity in terms of only TM polarized light (TM reflectivity).

View Article and Find Full Text PDF

Objective: Macromolecular contrast agents for magnetic resonance imaging (MRI) are useful blood-pool agents because of their long systemic half-life and have found applications in monitoring tumor vasculature and angiogenesis. Macromolecular contrast agents have been able to overcome some of the disadvantages of the conventional small-molecule contrast agent Magnevist (gadolinium-diethylenetriaminepentaacetic acid), such as rapid extravasation and quick renal clearance, which limits the viable MRI time. There is an urgent need for new MRI contrast agents that increase the sensitivity of detection with a higher relaxivity, longer blood half-life, and reduced toxicity from free Gd3+ ions.

View Article and Find Full Text PDF