J Chem Phys
February 2024
The ice surface is known for presenting a very small kinetic friction coefficient, but the origin of this property remains highly controversial to date. In this work, we revisit recent computer simulations of ice sliding on atomically smooth substrates, using newly calculated bulk viscosities for the TIP4P/ice water model. The results show that spontaneously formed premelting films in static conditions exhibit an effective viscosity that is about twice the bulk viscosity.
View Article and Find Full Text PDFExperimental measurements of the surface tension of colloidal interfaces have long been in conflict with computer simulations. In this Letter we show that the surface tension of colloids as measured by surface fluctuations picks up a gravity-dependent contribution which removes the discrepancy. The presence of this term puts a strong constraint on the structure of the interface which allows one to identify corrections to the fundamental equation of equilibrium capillarity and deduce bottom up the microscopic origin of a growth model with close relation to the Kardar-Parisi-Zhang equation.
View Article and Find Full Text PDFWith an ever-increasing interest in water properties, many intermolecular force fields have been proposed to describe the behavior of water. Unfortunately, good models for liquid water usually cannot provide simultaneously an accurate melting point for ice. For this reason, the TIP4P/Ice model was developed for targeting the melting point and has become the preferred choice for simulating ice at coexistence.
View Article and Find Full Text PDFThe origin of ice slipperiness has been a matter of great controversy for more than a century, but an atomistic understanding of ice friction is still lacking. Here, we perform computer simulations of an atomically smooth substrate sliding on ice. In a large temperature range between 230 and 266 K, hydrophobic sliders exhibit a premelting layer similar to that found at the ice/air interface.
View Article and Find Full Text PDFUsing Lifshitz theory, we assess the role of van der Waals forces at interfaces of ice and water. The results are combined with measured structural forces from computer simulations to develop a quantitative model of the surface free energy of premelting films. This input is employed within the framework of wetting theory and allows us to predict qualitatively the behavior of quasi-liquid layer thickness as a function of ambient conditions.
View Article and Find Full Text PDFJ Phys Condens Matter
April 2022
The van der Waals force established between two surfaces plays a central role in many phenomena, such as adhesion or friction. However, the dependence of this forces on the distance of separation between plates is very complex. Two widely different non-retarded and retarded regimes are well known, but these have been traditionally studied separately.
View Article and Find Full Text PDFThe crystal growth kinetics and interfacial properties of titanium (Ti) are studied using molecular dynamics computer simulation. The interactions between the Ti atoms are modeled via an embedded atom method potential. First, the free solidification method (FSM) is used to determine the melting temperature T at zero pressure where the transition from liquid to body-centered cubic crystal occurs.
View Article and Find Full Text PDFHypothesis: As a fluid approaches three phase coexistence, adsorption may take place by the successive formation of two intervening wetting films. The equilibrium thickness of these wetting layers is the result of a delicate balance of intermolecular forces, as dictated by an underlying interface potential. The van der Waals forces for the two variable adsorption layers may be formulated exactly from Dzyaloshinskii-Lifshitz-Pitaevskii theory, and analytical approximations may be derived that extent well beyond the validity of conventional Hamaker theory.
View Article and Find Full Text PDFClose to the triple point, the surface of ice is covered by a thin liquid layer (so-called quasi-liquid layer) which crucially impacts growth and melting rates. Experimental probes cannot observe the growth processes below this layer, and classical models of growth by vapor deposition do not account for the formation of premelting films. Here, we develop a mesoscopic model of liquid-film mediated ice growth, and identify the various resulting growth regimes.
View Article and Find Full Text PDFWith climate modeling predicting a raise of at least 2°C by year 2100, the fate of ice has become a serious concern, but we still do not understand how ice grows (or melts). In the atmosphere, crystal growth rates of basal and prism facets exhibit an enigmatic temperature dependence and crossover up to three times in a range between 0° and -40°. Here, we use large-scale computer simulations to characterize the ice surface and identify a sequence of previously unidentified phase transitions on the main facets of ice crystallites.
View Article and Find Full Text PDFSurfactant-assisted seeded growth of metal nanoparticles (NPs) can be engineered to produce anisotropic gold nanocrystals with high chiroptical activity through the templating effect of chiral micelles formed in the presence of dissymmetric cosurfactants. Mixed micelles adsorb on gold nanorods, forming quasihelical patterns that direct seeded growth into NPs with pronounced morphological and optical handedness. Sharp chiral wrinkles lead to chiral plasmon modes with high dissymmetry factors (~0.
View Article and Find Full Text PDFConsidering ice-premelting on a quartz rock surface (i.e. silica) we calculate the Lifshitz excess pressures in a four layer system with rock-ice-water-air.
View Article and Find Full Text PDFUnderstanding the wetting properties of premelting films requires knowledge of the film's equation of state, which is not usually available. Here we calculate the disjoining pressure curve of premelting films and perform a detailed thermodynamic characterization of premelting behavior on ice. Analysis of the density profiles reveals the signature of weak layering phenomena, from one to two and from two to three water molecular layers.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2019
In this work we perform computer simulations of the ice surface in order to elucidate the role of nitrogen in the crystal growth rates and crystal habits of snow in the atmosphere. In pure water vapor at temperatures typical of ice crystal formation in cirrus clouds, we find that basal and primary prismatic facets exhibit a layer of premelted ice, with thickness in the subnanometer range. For partial pressures of 1 bar, well above the expected values in the troposphere, we find that only small amounts of nitrogen are adsorbed.
View Article and Find Full Text PDFOne of the major difficulties hindering the widespread application of colloidal anisotropic plasmonic nanoparticles is the limited robustness and reproducibility of multistep synthetic methods. We demonstrate herein that the reproducibility and reliability of colloidal gold nanorod (AuNR) synthesis can be greatly improved by disconnecting the symmetry-breaking event from the seeded growth process. We have used a modified silver-assisted seeded growth method in the presence of the surfactant hexadecyltrimethylammonium bromide and n-decanol as a co-surfactant to prepare small AuNRs in high yield, which were then used as seeds for the growth of high quality AuNR colloids.
View Article and Find Full Text PDFMost often in chemical physics, long range van der Waals surface interactions are approximated by the exact asymptotic result at vanishing distance, the well known additive approximation of London dispersion forces due to Hamaker. However, the description of retardation effects that is known since the time of Casimir is completely neglected for the lack of a tractable expression. Here we show that it is possible to describe surface van der Waals forces at arbitrary distances in one single simple equation.
View Article and Find Full Text PDFIn this work, we probe the concept of interface tension for ultrathin adsorbed liquid films on the nanoscale by studying the surface fluctuations of films down to the monolayer. Our results show that the spectrum of film height fluctuations of a liquid-vapor surface may be extended to ultrathin films provided we take into account the interactions of the substrate with the surface. Global fluctuations of the film height are described in terms of disjoining pressure, whereas surface deformations that are proportional to the interface area are accounted for by a film thickness-dependent surface tension.
View Article and Find Full Text PDFThe irradiation of gold nanorod colloids with a femtosecond laser can be tuned to induce controlled nanorod reshaping, yielding colloids with exceptionally narrow localized surface plasmon resonance bands. The process relies on a regime characterized by a gentle multishot reduction of the aspect ratio, whereas the rod shape and volume are barely affected. Successful reshaping can only occur within a narrow window of the heat dissipation rate: Low cooling rates lead to drastic morphological changes, and fast cooling has nearly no effect.
View Article and Find Full Text PDFIn this paper we try to work out in detail the implications of a microscopic theory for capillary waves under the assumption that the density is given along lines normal to the interface. Within this approximation, which may be justified in terms of symmetry arguments, the Fisk-Widom scaling of the density profile holds for frozen realizations of the interface profile. Upon thermal averaging of capillary wave fluctuations, the resulting density profile yields results consistent with renormalization group calculations in the one-loop approximation.
View Article and Find Full Text PDFThe statistical associating fluid theory for attractive potentials of variable range (SAFT-VR) density functional theory (DFT) developed by [Gloor et al., J. Chem.
View Article and Find Full Text PDFWe perform computer simulations of the quasiliquid layer of ice formed at the ice-vapor interface close to the ice Ih-liquid-vapor triple point of water. Our study shows that the two distinct surfaces bounding the film behave at small wavelengths as atomically rough and independent ice-water and water-vapor interfaces. For long wavelengths, however, the two surfaces couple, large scale parallel fluctuations are inhibited, and the ice-vapor interface becomes smooth.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2015
We use Monte Carlo simulations of a Lennard-Jones fluid adsorbed on a short-range planar wall substrate to study the fluctuations in the thickness of the wetting layer, and we get a quantitative and consistent characterization of their mesoscopic Hamiltonian, H[ξ]. We have observed important finite-size effects, which were hampering the analysis of previous results obtained with smaller systems. The results presented here support an appealing simple functional form for H[ξ], close but not exactly equal to the theoretical nonlocal proposal made on the basis a generic density-functional analysis by Parry and coworkers.
View Article and Find Full Text PDFIn this work we study, by means of molecular dynamics simulations, the solid-liquid interface of NaCl under coexistence conditions. By analysing capillary waves, we obtain the stiffness for different orientations of the solid and calculate the interfacial free energy by expanding the dependency of the interfacial free energy with the solid orientation in terms of cubic harmonics. We obtain an average value for the solid-fluid interfacial free energy of 89 ± 6 mN m(-1) that is consistent with previous results based on the measure of nucleation free energy barriers [Valeriani et al.
View Article and Find Full Text PDFIn this paper, we study a general theoretical framework which allows us to approximate the real space Ewald sum by means of effective force shifted screened potentials, together with a self term. Using this strategy it is possible to generalize the reaction field method, as a means to approximate the real space Ewald sum. We show that this method exhibits faster convergence of the Coulomb energy than several schemes proposed recently in the literature while enjoying a much more sound and clear electrostatic significance.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2014
In this work we study the ice-water interface under coexistence conditions by means of molecular simulations using the TIP4P/2005 water model. Following the methodology proposed by Hoyt and co-workers [J. J.
View Article and Find Full Text PDF