Publications by authors named "MacDowell A"

Geological samples are inherently multi-scale. Understanding their bulk physical and chemical properties requires characterization down to the nano-scale. A powerful technique to study the three-dimensional microstructure is X-ray tomography, but it lacks information about the chemistry of samples.

View Article and Find Full Text PDF

Beamline 11.3.1 at the Advanced Light Source is a tender/hard (6-17 keV) x-ray bend magnet beamline recently re-purposed with a new full-field, nanoscale transmission x-ray microscope.

View Article and Find Full Text PDF

Resistive heating of a sample in a diamond anvil cell (DAC) can generate a homogeneous temperature field across the sample chamber with reliable temperatures measured by a thermocouple. It is of importance in experiments aiming at exploring phase diagrams and quantifying thermoelastic properties of materials. Here, we present a ring-heater design developed for BX90 diamond anvil cells (DACs).

View Article and Find Full Text PDF

A new design for a double-sided high-pressure diamond anvil cell laser heating set-up is described. The prototype is deployed at beamline 12.2.

View Article and Find Full Text PDF

Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope.

View Article and Find Full Text PDF

We describe a new experimental technique that allows for soft x-ray spectroscopy studies (∼100-1000 eV) of high pressure liquid (∼100 bars). We achieve this through a liquid cell with a 100 nm-thick SiN membrane window, which is sandwiched by two identical O-rings for vacuum sealing. The thin SiN membrane allows soft x-rays to penetrate, while separating the high-pressure liquid under investigation from the vacuum required for soft x-ray transmission and detection.

View Article and Find Full Text PDF

Introduction:   We present a unique pathway for care aimed specifically at spinal patients. As a result of the shift of the spoke direction from the existing hub-and-spoke model, patient care is being redirected successfully with great benefit to a rural department. Within the rural community, it is the spoke that is the main locality to which patients present and at which they are treated.

View Article and Find Full Text PDF

Continuous improvements at X-ray imaging beamlines at synchrotron light sources have made dynamic synchrotron X-ray micro-computed tomography (SXR-µCT) experiments more routinely available to users, with a rapid increase in demand given its tremendous potential in very diverse areas. In this work a survey of five different four-dimensional SXR-µCT experiments is presented, examining five different parameters linked to the evolution of the investigated system, and tackling problems in different areas in earth sciences. SXR-µCT is used to monitor the microstructural evolution of the investigated sample with the following variables: (i) high temperature, observing in situ oil shale pyrolysis; (ii) low temperature, replicating the generation of permafrost; (iii) high pressure, to study the invasion of supercritical CO in deep aquifers; (iv) uniaxial stress, to monitor the closure of a fracture filled with proppant, in shale; (v) reactive flow, to observe the evolution of the hydraulic properties in a porous rock subject to dissolution.

View Article and Find Full Text PDF

Background: Joint replacement surgery is having an increasing demand as national healthcare systems confront an ever ageing population. Surgical complications associated with lower limb arthroplasty are well known but less investigation has been performed examining its effect on air travel, more specifically, unwanted and significant inconvenience caused to travelers going through airport security.

Methods: In lower limb arthroplasty clinics, 50 patients who met our selection criteria were given questionnaires.

View Article and Find Full Text PDF

Synchrotron radiation micro-tomography (SRµT) is a non-destructive three-dimensional (3D) imaging technique that offers high flux for fast data acquisition times with high spatial resolution. In the electronics industry there is serious interest in performing failure analysis on 3D microelectronic packages, many which contain multiple levels of high-density interconnections. Often in tomography there is a trade-off between image resolution and the volume of a sample that can be imaged.

View Article and Find Full Text PDF

Tip-apex distance is a well described method for assessment of screw placement in dynamic hip screw fixation of proximal femoral fracture. A distance of <25mm is associated with a significantly lower rate of cut out of the fixation device. Measurement is frequently performed retrospectively, although there has been no demonstration as to what accuracy the surgeon has of estimating tip-apex distance from image intensifier images, whilst scrubbed in theatre.

View Article and Find Full Text PDF

A compact ultrahigh temperature tensile testing instrument has been designed and fabricated for in situ x-ray micro-tomography using synchrotron radiation at the Advanced Light Source, Lawrence Berkeley National Laboratory. It allows for real time x-ray micro-tomographic imaging of test materials under mechanical load at temperatures up to 2300 °C in controlled environments (vacuum or controlled gas flow). Sample heating is by six infrared halogen lamps with ellipsoidal reflectors arranged in a confocal configuration, which generates an approximately spherical zone of high heat flux approximately 5 mm in diameter.

View Article and Find Full Text PDF

We employ a coded aperture pattern in front of a pixilated charge couple device detector to image fluorescent x-rays (6-25 KeV) from samples irradiated with synchrotron radiation. Coded apertures encode the angular direction of x-rays, and given a known source plane, allow for a large numerical aperture x-ray imaging system. The algorithm to develop and fabricate the free standing No-Two-Holes-Touching aperture pattern was developed.

View Article and Find Full Text PDF

Failure caused by dendrite growth in high-energy-density, rechargeable batteries with lithium metal anodes has prevented their widespread use in applications ranging from consumer electronics to electric vehicles. Efforts to solve the lithium dendrite problem have focused on preventing the growth of protrusions from the anode surface. Synchrotron hard X-ray microtomography experiments on symmetric lithium-polymer-lithium cells cycled at 90 °C show that during the early stage of dendrite development, the bulk of the dendritic structure lies within the electrode, underneath the polymer/electrode interface.

View Article and Find Full Text PDF

High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D) (e.g. Brodersen et al.

View Article and Find Full Text PDF

To develop new ionomers and optimize existing ones, there is a need to understand their structure/function relationships experimentally. In this letter, synchrotron X-ray microtomography is used to examine water distributions within Nafion, the most commonly used ionomer. Simultaneous high spatial (∼1 μm) and temporal (∼10 min) resolutions, previously unattained by other techniques, clearly show the nonlinear water profile across the membrane thickness, with a continuous transition from dynamic to steady-state transport coefficients with the requisite water-content dependence.

View Article and Find Full Text PDF

To extend the range of high-temperature, high-pressure studies within the diamond anvil cell, a Liermann-type diamond anvil cell with radial diffraction geometry (rDAC) was redesigned and developed for synchrotron X-ray diffraction experiments at beamline 12.2.2 of the Advanced Light Source.

View Article and Find Full Text PDF

Synchrotron radiation X-ray tomographic microscopy (SRXTM) was used to characterize the three-dimensional microstructure, geometry and distribution of different phases in two shale samples obtained from the North Sea (sample N1) and the Upper Barnett Formation in Texas (sample B1). Shale is a challenging material because of its multiphase composition, small grain size, low but significant amount of porosity, as well as strong shape- and lattice-preferred orientation. The goals of this round-robin project were to (i) characterize microstructures and porosity on the micrometer scale, (ii) compare results measured at three synchrotron facilities, and (iii) identify optimal experimental conditions of high-resolution SRXTM for fine-grained materials.

View Article and Find Full Text PDF

Ceramic matrix composites are the emerging material of choice for structures that will see temperatures above ~1,500 °C in hostile environments, as for example in next-generation gas turbines and hypersonic-flight applications. The safe operation of applications depends on how small cracks forming inside the material are restrained by its microstructure. As with natural tissue such as bone and seashells, the tailored microstructural complexity of ceramic matrix composites imparts them with mechanical toughness, which is essential to avoiding failure.

View Article and Find Full Text PDF

Studies using synchrotron microtomography have shown that this radiographic imaging technique provides highly informative microanatomical data from modern and fossil bones and teeth without the need for physical sectioning. The method is considered to be nondestructive; however, researchers using the European Synchrotron Radiation Facility have reported that color changes sometimes occur in teeth during submicron scanning. Using the Advanced Light Source, we tested for color changes during micron-level scanning and for postexposure effects of ultraviolet light.

View Article and Find Full Text PDF

A rare case of a septic knee arthritis presenting as an infected ruptured popliteal cyst is described. Infection of a popliteal cyst is an uncommon complication of septic arthritis and presentation can mimic that of an acute deep vein thrombosis, leading to delay in diagnosis and treatment. Of interest, the typical hallmarks of infection and haematological markers of inflammation were all unremarkable in the current case.

View Article and Find Full Text PDF

In situ mechanical testing coupled with imaging using high-energy synchrotron X-ray diffraction or tomography is gaining in popularity as a technique to investigate micrometer and even sub-micrometer deformation and fracture mechanisms in mineralized tissues, such as bone and teeth. However, the role of the irradiation in affecting the nature and properties of the tissue is not always taken into account. Accordingly, we examine here the effect of X-ray synchrotron-source irradiation on the mechanistic aspects of deformation and fracture in human cortical bone.

View Article and Find Full Text PDF

A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory.

View Article and Find Full Text PDF
Neutrophils in asthma.

Curr Allergy Asthma Rep

November 2007

Asthma is a complex disease with a significant inflammatory component. Multiple cell types are involved in its pathophysiology. The presence of eosinophils, the cell usually associated with allergic diseases, does not fully explain the inflammation found in asthma.

View Article and Find Full Text PDF

We report the unfortunate case of a man who experienced stem failures of both his primary and revision hip arthroplasties. As far as we are aware this is the only reported case of a patient to suffer the misfortune of multiple femoral implant failures.

View Article and Find Full Text PDF