Publications by authors named "MacDougall-Shackleton S"

Organisms regularly adjust their physiology and energy balance in response to predictable seasonal environmental changes. Stressors and contaminants have the potential to disrupt these critical seasonal transitions. No studies have investigated how simultaneous exposure to the ubiquitous toxin methylmercury (MeHg) and food stress affects birds' physiological performance across seasons.

View Article and Find Full Text PDF

Several metabolic hormones signal an organism's energy balance to the brain and modulate feeding behaviours accordingly. These metabolic signals may also regulate other behaviour related to energy balance, such as food caching or hoarding. Ghrelin is one such hormone, but it appears to exert different effects on appetite and fat levels in birds and mammals.

View Article and Find Full Text PDF

Migratory animals may trade-off between investing energy in immune defense versus investing in energy reserves needed for seasonal migration. However, these trade-offs are often masked by other sources of variation and may not be detected through observational field studies of free-living animals. Moreover, observational studies can rarely distinguish the costs of pathogenic infection from those of mounting an immune response.

View Article and Find Full Text PDF

Cluster N is a region of the visual forebrain of nocturnally migrating songbirds that supports the geomagnetic compass of nocturnal migrants. Cluster N expresses immediate-early genes (ZENK), indicating neuronal activation. This neuronal activity has only been recorded at night during the migratory season.

View Article and Find Full Text PDF

Methylmercury (MeHg) is a concerning contaminant due to its ubiquity and harmful effects on organisms. Although birds are important models in the neurobiology of vocal learning and adult neuroplasticity, the neurotoxic effects of MeHg are less understood in birds than mammals. We surveyed the literature on MeHg effects on biochemical changes in the avian brain.

View Article and Find Full Text PDF

Collisions with windows on buildings are a major source of bird mortality. The current understanding of daytime collisions is limited by a lack of empirical data on how collisions occur in the real world because most data are collected by recording evidence of mortality rather than pre-collision behaviour. Based on published literature suggesting a causal relationship between bird collision risk and the appearance of reflections on glass, the fact that reflections vary in appearance depending on viewing angle, and general principles of object collision kinematics, we hypothesized that the risk and lethality of window collisions may be related to the angle and velocity of birds' flight.

View Article and Find Full Text PDF

Prolactin and 11-ketotestosterone (11-KT) are important reproductive hormones in fishes, which may also influence immunocompetence. The immunocompetence handicap hypothesis states that higher androgen concentrations that support secondary sex traits are traded off against a decrease in immune system function. To test the relationships between these hormones and immunocompetence, we experimentally manipulated 11-ketotestosterone and prolactin in the freshwater fish, bluegill (Lepomis macrochirus) during parental care using implants that contained either 11-KT, prolactin, or an inert control.

View Article and Find Full Text PDF

The role of myelination in the development of motor control is widely known, but its role in the development of cognitive abilities is less understood. Here, we examined sex differences in the development of myelination of structures and tracts that support song learning and production in songbirds. We collected brains from 63 young male and female zebra finches (Taeniopygia guttata) over four stages of development that correspond to different stages of song learning.

View Article and Find Full Text PDF

Avian migration is a challenging life stage susceptible to the adverse effects of stressors, including contaminants like methylmercury (MeHg). Although birds often experience stressors and contaminants concurrently in the wild, no study to date has investigated how simultaneous exposure to MeHg and food stress affects migratory behavior. Our objectives were to determine if MeHg or food stress exposure during summer, alone or combined, has carry-over effects on autumn migratory activity, and if hormone levels (corticosterone, thyroxine) and body condition were related to these effects.

View Article and Find Full Text PDF

Migratory flights by birds are among the most energetically demanding forms of animal movement, and are primarily fueled by fat as an energy source. Leptin is a critical fat-regulation hormone associated with energy balance in non-avian species but its function in birds is highly controversial. Prior research indicated the effects of leptin differed between birds in migratory condition or not, but no research has assessed the effect of leptin on migratory behaviour itself.

View Article and Find Full Text PDF

Twice a year, billions of birds take on drastic physiological and behavioural changes to migrate between breeding and wintering areas. On migration, most passerine birds regularly stop over along the way to rest and refuel. Endogenous energy stores are not only the indispensable fuel to complete long distance flights, but are also important peripheral signals that once integrated in the brain modulate crucial behavioural decisions, such as the decision to resume migration after a stopover.

View Article and Find Full Text PDF

Humans can perceive a regular psychological pulse in music known as the beat. The evolutionary origins and neural mechanisms underlying this ability are hypothetically linked to imitative vocal learning, a rare trait found only in some species of mammals and birds. Beat perception has been demonstrated in vocal learning parrots but not in songbirds.

View Article and Find Full Text PDF

The brain regions that control the learning and production of song and other learned vocalizations in songbirds exhibit some of the largest sex differences in the brain known in vertebrates and are associated with sex differences in singing behavior. Song learning takes place through multiple stages: an early sensory phase when song models are memorized, followed by a sensorimotor phase in which auditory feedback is used to modify song output through subsong, plastic song, to adult crystalized song. However, how patterns of neurogenesis in these brain regions change through these learning stages, and differ between the sexes, is little explored.

View Article and Find Full Text PDF

Methylmercury (MeHg) is a globally distributed pollutant that can negatively affect wildlife. Bird feathers are often used as a monitoring tool of contaminant exposure, but variability in total mercury (THg) content in flight feathers has raised concerns over their utility. The objective of this study was to quantify blood and feather THg depuration through the progression of primary feather molt in order to clarify the relationship between blood and feather mercury concentration, and test the reliability of feather THg measurements as a monitoring tool in wild songbirds.

View Article and Find Full Text PDF

Mercury is a global pollutant and potent neurotoxic metal. Its most toxic and bioavailable form, methylmercury, can have both lethal and sublethal effects on wildlife. In birds, methylmercury exposure can disrupt behavior, hormones, the neuroendocrine system, and feather integrity.

View Article and Find Full Text PDF

Migratory animals encounter multiple parasite communities, raising concerns that migration may aid transport of infectious disease. How migration affects disease spread depends fundamentally on how disease affects migration, specifically whether infection alters individuals' migratory physiology and behavior. We inoculated white-throated sparrows () with avian malaria parasites ( sp.

View Article and Find Full Text PDF

Reliable environmental cues, such as photoperiod, act as initial predictive cues that allow birds to time reproduction to match peak food abundance for their offspring. More variable local cues, like temperature, may, however, provide more precise information about the timing of food abundance. Non-migratory birds, in particular, should be sensitive to temperature cues and use them to modulate their reproductive timing.

View Article and Find Full Text PDF

Predator-induced fear is both, one of the most common stressors employed in animal model studies of post-traumatic stress disorder (PTSD), and a major focus of research in ecology. There has been a growing discourse between these disciplines but no direct empirical linkage. We endeavoured to provide this empirical linkage by conducting experiments drawing upon the strengths of both disciplines.

View Article and Find Full Text PDF

Reference to glucocorticoids as "stress hormones" has been growing in prevalence in the literature, including in comparative and environmental endocrinology. Although glucocorticoids are elevated in response to a variety of stressors in vertebrate animals, the primary functions of glucocorticoids are not responding to stressors and they are only one component of complex suite of physiological and behavioral responses to stressors. Thus, the use of the short-hand phrase "stress hormone" can be misleading.

View Article and Find Full Text PDF

Immune defences often trade off with other life-history components. Within species, optimal allocation to immunity may differ between the sexes or between alternative life-history strategies. White-throated sparrows () are unusual in having two discrete plumage morphs, white-striped and tan-striped.

View Article and Find Full Text PDF

Environmental contaminants have the potential to act as developmental stressors and impair development of song and the brain of songbirds, but they have been largely unstudied in this context. 2,2',4,4',5-Pentabromodiphenyl ether (BDE-99) is a brominated flame retardant congener that has demonstrated endocrine disrupting effects, and has pervaded the global environment. We assessed the effects of in ovo exposure to environmentally relevant levels of BDE-99 on the neuroanatomy of the song-control system in a model songbird species, the zebra finch (Taeniopygia guttata).

View Article and Find Full Text PDF

Migratory birds move through multiple habitats and encounter a diverse suite of parasites. This raises concern over migrants' role in transporting infectious disease between breeding and wintering grounds, and along migratory flyways. Trade-offs between flight and immune defenses could interfere with infected individuals' migratory timing and success, potentially affecting infection dynamics.

View Article and Find Full Text PDF

A central tenet of ecoimmunology is that an organism's environment shapes its optimal investment in immunity. For example, the benefits of acquired (relatively pathogen specific) versus innate (nonspecific) immune defenses are thought to vary with the risk of encountering familiar versus unfamiliar pathogens. Because pathogen communities vary geographically, individuals that travel farther during seasonal migration or natal dispersal are predicted to have higher exposure to novel pathogens, and lower exposure to familiar pathogens, potentially favoring investment in innate immunity.

View Article and Find Full Text PDF

The auditory forebrain regions caudo-medial nidopallium (NCM) and caudo-medial mesopallium (CMM) of songbirds exhibit differential expression of the immediate-early gene ZENK in response to playback of different song stimuli, and dependent on early-life auditory experience. Similarly, song preferences depend both on auditory experience and unlearned biases for particular song features. We explored the contributions of early-life auditory experience and the type of song stimuli on the Zenk response in the auditory forebrain of female zebra finches.

View Article and Find Full Text PDF