Publications by authors named "MacCoss M"

Spherocytosis is one of the most common inherited disorders, yet presents with a wide range of clinical severity. While several genes have been found mutated in patients with spherocytosis, the molecular basis for the variability in severity of haemolytic anaemia is not entirely understood. To identify candidate proteins involved in haemolytic anaemia pathophysiology, we utilized a label-free comparative proteomic approach to detect differences in red blood cells (RBCs) from normal and β-adducin (Add2) knock-out mice.

View Article and Find Full Text PDF

Background: Seminal fluid plays an important role in successful fertilization, but knowledge of the full suite of proteins transferred from males to females during copulation is incomplete. The list of ejaculated proteins remains particularly scant in one of the best-studied mammalian systems, the house mouse (Mus domesticus), where artificial ejaculation techniques have proven inadequate. Here we investigate an alternative method for identifying ejaculated proteins, by isotopically labeling females with 15N and then mating them to unlabeled, vasectomized males.

View Article and Find Full Text PDF

Filter-aided sample preparation (FASP) and a new sample preparation method using a modified commercial SDS removal spin column are quantitatively compared in terms of their performance for shotgun proteomic experiments in three complex proteomic samples: a Saccharomyces cerevisiae lysate (insoluble fraction), a Caenorhabditis elegans lysate (soluble fraction), and a human embryonic kidney cell line (HEK293T). The characteristics and total number of peptides and proteins identified are compared between the two procedures. The SDS spin column procedure affords a conservative fourfold improvement in throughput, is more reproducible, less expensive (i.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) infects an estimated 170 million individuals worldwide, and the current standard of care, a combination of pegylated interferon alpha and ribavirin, is efficacious in achieving sustained viral response in ~50% of treated patients. Novel therapies under investigation include the use of nucleoside analog inhibitors of the viral RNA-dependent RNA polymerase. NM283, a 3'-valyl ester prodrug of 2'-C-methylcytidine, has demonstrated antiviral efficacy in HCV-infected patients (N.

View Article and Find Full Text PDF

Hemolytic anemia is one of the most common inherited disorders. To identify candidate proteins involved in hemolytic anemia pathophysiology, we utilized a label-free comparative proteomic approach to detect differences in RBCs from normal and beta-adducin (Add2) knock-out mice. We detected 7 proteins that were decreased and 48 proteins that were increased in the beta-adducin knock-out RBC ghost.

View Article and Find Full Text PDF

A major challenge for core facilities is determining quantitative protein differences across complex biological samples. Although there are numerous techniques in the literature for relative and absolute protein quantification, the majority is nonroutine and can be challenging to carry out effectively. There are few studies comparing these technologies in terms of their reproducibility, accuracy, and precision, and no studies to date deal with performance across multiple laboratories with varied levels of expertise.

View Article and Find Full Text PDF

Resource (core) facilities have played an ever-increasing role in furnishing the scientific community with specialized instrumentation and expertise for proteomics experiments in a cost-effective manner. The Proteomics Research Group (PRG) of the Association of Biomolecular Resource Facilities (ABRF) has sponsored a number of research studies designed to enable participants to try new techniques and assess their capabilities relative to other laboratories analyzing the same samples. Presented here are results from three PRG studies representing different samples that are typically analyzed in a core facility, ranging from simple protein identification to targeted analyses, and include intentional challenges to reflect realistic studies.

View Article and Find Full Text PDF

We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor-binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs.

View Article and Find Full Text PDF

Efforts to develop novel, interferon-sparing therapies for treatment of chronic hepatitis C (HCV) infection are contingent on the ability of combination therapies consisting of direct antiviral inhibitors to achieve a sustained virologic response. This work demonstrates a proof of concept that coadministration of the nucleoside analogue MK-0608 with the protease inhibitor MK-7009, both of which produced robust viral load declines as monotherapy, to an HCV-infected chimpanzee can achieve a cure of infection.

View Article and Find Full Text PDF

Proteomics experiments based on Selected Reaction Monitoring (SRM, also referred to as Multiple Reaction Monitoring or MRM) are being used to target large numbers of protein candidates in complex mixtures. At present, instrument parameters are often optimized for each peptide, a time and resource intensive process. Large SRM experiments are greatly facilitated by having the ability to predict MS instrument parameters that work well with the broad diversity of peptides they target.

View Article and Find Full Text PDF

Proper centromere function is critical to maintain genomic stability and to prevent aneuploidy, a hallmark of tumors and birth defects. A conserved feature of all eukaryotic centromeres is an essential histone H3 variant called CENP-A that requires a centromere targeting domain (CATD) for its localization. Although proteolysis prevents CENP-A from mislocalizing to euchromatin, regulatory factors have not been identified.

View Article and Find Full Text PDF

Electron-transfer dissociation (ETD) induces fragmentation along the peptide backbone by transferring an electron from a radical anion to a protonated peptide. In contrast with collision-induced dissociation, side chains and modifications such as phosphorylation are left intact through the ETD process. Because the precursor charge state is an important input to MS/MS sequence database search tools, the ability to accurately determine the precursor charge is helpful for the identification process.

View Article and Find Full Text PDF

The problem of identifying proteins from a shotgun proteomics experiment has not been definitively solved. Identifying the proteins in a sample requires ranking them, ideally with interpretable scores. In particular, "degenerate" peptides, which map to multiple proteins, have made such a ranking difficult to compute.

View Article and Find Full Text PDF

Antifreeze proteins (AFPs) have independently evolved in many organisms. AFPs act by binding to ice crystals, effectively lowering the freezing point. AFPs are often at high copy number in a genome and diversity exists between copies.

View Article and Find Full Text PDF

Inducible nitric-oxide synthase (iNOS) produces biologically stressful levels of nitric oxide (NO) as a potent mediator of cellular cytotoxicity or signaling. Yet, how this nitrosative stress affects iNOS function in vivo is poorly understood. Here we define two specific non-heme iNOS nitrosation sites discovered by combining UV-visible spectroscopy, chemiluminescence, mass spectrometry, and x-ray crystallography.

View Article and Find Full Text PDF
Article Synopsis
  • The Purkinje cell degeneration (pcd) mouse model represents a genetic condition that leads to rapid loss of cerebellum and retina neurons, primarily Purkinje cells.
  • The cause of pcd is linked to the malfunction of the Nna1 gene, a conserved zinc carboxypeptidase, which was studied alongside its Drosophila counterpart, NnaD, to understand the disease.
  • Investigations showed that loss of Nna1 function disrupts mitochondrial function and bioenergetics, affecting the expression of specific enzymes vital for energy production.
View Article and Find Full Text PDF

The measurement of small molecule metabolites on a large scale offers the opportunity for a more complete understanding of cellular metabolism. We developed a high-throughput method to quantify primary amine-containing metabolites in the yeast Saccharomyces cerevisiae by the use of capillary electrophoresis in combination with fluorescent derivatization of cell extracts. We measured amino acid levels in the yeast deletion collection, a set of approximately 5000 strains each lacking a single gene, and developed a computational pipeline for data analysis.

View Article and Find Full Text PDF

Knowledge of protein structures and protein-protein interactions is essential for understanding of biological processes. Recent advances in protein cross-linking and mass spectrometry (MS) have shown significant potential to contribute to this area. Here we report a novel method to rapidly and accurately identify cross-linked peptides based on their unique isotope signature when digested in the presence of H(2)(18)O.

View Article and Find Full Text PDF

High field asymmetric waveform ion mobility spectrometry (FAIMS) has been used increasingly in recent years as an additional method of ion separation and selection before mass spectrometry. The FAIMS electrodes are relatively simple to design and fabricate for laboratories wishing to implement their own FAIMS designs. However, construction of the electronics apparatus needed to produce the required high magnitude asymmetric electric field oscillating at a frequency of several hundred kilohertz is not trivial.

View Article and Find Full Text PDF

Over 1 billion pounds of organophosphorus (OP) chemicals are manufactured worldwide each year, including 70 million pounds of pesticides sprayed in the US. Current methods to monitor environmental and occupational exposures to OPs such as chlorpyrifos (CPS) have limitations, including low specificity and sensitivity, and short time windows for detection. Biomarkers for the OP tricresyl phosphate (TCP), which can contaminate bleed air from jet engines and cause an occupational exposure of commercial airline pilots, crewmembers and passengers, have not been identified.

View Article and Find Full Text PDF

We describe a method to measure protein synthesis and catabolism in humans without prior purification and use the method to measure the turnover of surfactant protein-B (SP-B). SP-B, a lung-specific, hydrophobic protein essential for fetal-neonatal respiratory transition, is present in only picomolar quantities in tracheal aspirate samples and difficult to isolate for dynamic turnover studies using traditional in vivo tracer techniques. Using infusion of [5,5,5-(2)H(3)] leucine and a targeted proteomics method, we measured both the quantity and kinetics of SP-B tryptic peptides in tracheal aspirate samples of symptomatic newborn infants.

View Article and Find Full Text PDF

Summary: Skyline is a Windows client application for targeted proteomics method creation and quantitative data analysis. It is open source and freely available for academic and commercial use. The Skyline user interface simplifies the development of mass spectrometer methods and the analysis of data from targeted proteomics experiments performed using selected reaction monitoring (SRM).

View Article and Find Full Text PDF

Data-independent tandem mass spectrometry isolates and fragments all of the molecular species within a given mass-to-charge window, regardless of whether a precursor ion was detected within the window. For shotgun proteomics on complex protein mixtures, data-independent MS/MS offers certain advantages over the traditional data-dependent MS/MS: identification of low-abundance peptides with insignificant precursor peaks, more direct relative quantification, free of biases caused by competing precursors and dynamic exclusion, and faster throughput due to simultaneous fragmentation of multiple peptides. However, data-independent MS/MS, especially on low-resolution ion-trap instruments, strains standard peptide identification programs, because of less precise knowledge of the peptide precursor mass and large numbers of spectra composed of two or more peptides.

View Article and Find Full Text PDF

In shotgun proteomics, the analysis of tandem mass spectrometry data from peptides can benefit greatly from high mass accuracy measurements. In this study, we have evaluated two database search strategies which use high mass accuracy measurements of the peptide precursor ion. Our results indicate that peptide identifications are improved when spectra are searched with a wide mass tolerance window and precursor mass is used as a filter to discard incorrect matches.

View Article and Find Full Text PDF

Identifying fertilization molecules is key to our understanding of reproductive biology, yet only a few examples of interacting sperm and egg proteins are known. One of the best characterized comes from the invertebrate archeogastropod abalone (Haliotis spp.), where sperm lysin mediates passage through the protective egg vitelline envelope (VE) by binding to the VE protein vitelline envelope receptor for lysin (VERL).

View Article and Find Full Text PDF