Realistic outcome measures that reflect everyday hearing challenges are needed to assess hearing aid and cochlear implant (CI) fitting. Literature suggests that listening effort measures may be more sensitive to differences between hearing-device settings than established speech intelligibility measures when speech intelligibility is near maximum. Which method provides the most effective measurement of listening effort for this purpose is currently unclear.
View Article and Find Full Text PDFWhen listening to a sound source in everyday situations, typical movement behavior is highly individual and may not result in the listener directly facing the sound source. Behavioral differences can affect the performance of directional algorithms in hearing aids, as was shown in previous work by using head movement trajectories of normal-hearing (NH) listeners in acoustic simulations for noise-suppression performance predictions. However, the movement behavior of hearing-impaired (HI) listeners with or without hearing aids may differ, and hearing-aid users might adapt their self-motion to improve the performance of directional algorithms.
View Article and Find Full Text PDFThe benefit from directional hearing devices predicted in the lab often differs from reported user experience, suggesting that laboratory findings lack ecological validity. This difference may be partly caused by differences in self-motion between the lab and real-life environments. This literature review aims to provide an overview of the methods used to measure and quantify self-motion, the test environments, and the measurement paradigms.
View Article and Find Full Text PDFHead movements can improve sound localization performance and speech intelligibility in acoustic environments with spatially distributed sources. However, they can affect the performance of hearing aid algorithms, when adaptive algorithms have to adjust to changes in the acoustic scene caused by head movement (the so-called maladaptation effect) or when directional algorithms are not facing in the optimal direction because the head has moved away (the so-called misalignment effect). In this article, we investigated the mechanisms behind these maladaptation and misalignment effects for a set of six standard hearing aid algorithms using acoustic simulations based on premade databases; this was done so we could study the effects as carefully as possible.
View Article and Find Full Text PDFRecent achievements in hearing aid development, such as visually guided hearing aids, make it increasingly important to study movement behavior in everyday situations in order to develop test methods and evaluate hearing aid performance. In this work, audiovisual virtual environments (VEs) were designed for communication conditions in a living room, a lecture hall, a cafeteria, a train station, and a street environment. Movement behavior (head movement, gaze direction, and torso rotation) and electroencephalography signals were measured in these VEs in the laboratory for 22 younger normal-hearing participants and 19 older normal-hearing participants.
View Article and Find Full Text PDFInteraural differences in sound arrival time (ITD) and in level (ILD) enable us to localize sounds in the horizontal plane, and can support source segregation and speech understanding in noisy environments. It is uncertain whether these cues are also available to hearing-impaired listeners who are bimodally fitted, i.e.
View Article and Find Full Text PDF