Background: Malaria, HIV/AIDS, and tuberculosis endemic areas show considerable geographical overlap, leading to incidence of co-infections. This requires treatment with multiple drugs, potentially causing adverse drug-drug interactions (DDIs). As anti-malarials are generally positively charged at physiological pH, they are likely to interact with human organic cation transporters 1 and 2 (OCT1 and OCT2).
View Article and Find Full Text PDFWhole parasite immunization strategies employing genetically attenuated parasites (GAP), which arrest during liver-stage development, have been applied successfully for induction of sterile malaria protection in rodents. Recently, we generated a Plasmodium berghei GAP-lacking expression of multidrug resistance-associated protein (MRP2) (PbΔmrp2) that was capable of partial schizogony in hepatocytes but showed complete growth arrest. Here, we investigated the protective efficacy after intravenous (IV) immunization of BALB/c and C57BL/6J mice with PbΔmrp2 sporozoites.
View Article and Find Full Text PDFMultidrug resistance (MDR) proteins belong to the B subfamily of the ATP Binding Cassette (ABC) transporters, which export a wide range of compounds including pharmaceuticals. In this study, we used reverse genetics to study the role of all seven Plasmodium MDR proteins during the life cycle of malaria parasites. Four P.
View Article and Find Full Text PDFMultidrug resistance-associated proteins (MRP) of Plasmodium falciparum have been associated with altered drug sensitivity. Knowledge on MRP substrate specificity is indispensible for the characterization of resistance mechanisms and identifying its physiological roles. An untargeted metabolomics approach detected decreased folate concentrations in red blood cells infected with schizont stage parasites lacking expression of MRP1.
View Article and Find Full Text PDFMultidrug resistance-associated proteins (MRPs) belong to the C-family of ATP-binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown.
View Article and Find Full Text PDFBackground: Membrane-associated ATP binding cassette (ABC) transport proteins hydrolyze ATP in order to translocate a broad spectrum of substrates, from single ions to macromolecules across membranes. In humans, members from this transport family have been linked to drug resistance phenotypes, e.g.
View Article and Find Full Text PDFBackground: Therapeutic blood plasma concentrations of anti-malarial drugs are essential for successful treatment. Pharmacokinetics of pharmaceutical compounds are dependent of adsorption, distribution, metabolism, and excretion. ATP binding cassette (ABC) transport proteins are particularly involved in drug deposition, as they are located at membranes of many uptake and excretory organs and at protective barriers, where they export endogenous and xenobiotic compounds, including pharmaceuticals.
View Article and Find Full Text PDF