Objective: To investigate the effects of acute exercise and long-term training on Na(+),K(+)-ATPase content, mRNA isoforms, and protein concentration in equine muscle.
Animals: 6 Standardbreds.
Procedures: Horses performed a bout of exercise on a treadmill before and after 18 weeks of combined interval and endurance training.
During early postnatal development, the myosin heavy chain (MyHC) expression pattern in equine gluteus medius muscle shows adaptation to movement and load,resulting in a decrease in the number of fast MyHC fibers and an increase in the number of slow MyHC fibers. In the present study we correlated the expression of MyHC isoforms to the expression of sarcoplasmic(endo)reticulum Ca2+-ATPase 1 and 2a (SERCA), phospholamban (PLB), calcineurin A (CnA), and calcineurin B (CnB). Gluteus medius muscle biopsies were taken at 0, 2, 4, and 48 weeks and analyzed using immunofluorescence.
View Article and Find Full Text PDFThe major structural protein in skeletal muscle, myosin heavy chain (MyHC), is primarily transcriptionally controlled. We compared the expression of MyHC isoforms on the mRNA and protein level in biopsies from the m. gluteus medius from adult untrained horses.
View Article and Find Full Text PDFThe horse is one of the few animals kept and bred for its athletic performance and is therefore an interesting model for human sports performance. The regulation of the development of equine locomotion in the first year of life, and the influence of early training on later performance, are largely unknown. The major structural protein in skeletal muscle, myosin heavy-chain (MyHC), is believed to be primarily transcriptionally controlled.
View Article and Find Full Text PDF