Background & Aims: Intestinal microbiota-host interactions play a major role in health and disease. This has been documented at the microbiota level ("dysbiosis" in chronic immune-mediated diseases) and through the study of specific bacteria-host interactions but rarely at the level of intestinal ecosystem dynamics. However, understanding the behavior of this ecosystem may be key to the successful treatment of disease.
View Article and Find Full Text PDFBackground: Chronic immune-mediated diseases are rapidly expanding and notoriously difficult to cure. Altered relatively stable intestinal microbiota configurations are associated with several of these diseases, and with a possible pre-disease condition (more susceptible to disease development) of the host-microbiota ecosystem. These observations are reminiscent of the behavior of an ecosystem with alternative stable states (different stable configurations that can exist under identical external conditions), and we recently postulated that health, pre-disease and disease represent such alternative states.
View Article and Find Full Text PDFThe human gut microbiota is increasingly recognized for its important or even decisive role in health. As it becomes clear that microbiota and host mutually affect and depend on each other in an intimate relationship, a holistic view of the gut microbiota-host association imposes itself. Ideally, a stable state of equilibrium, homeostasis, is maintained and serves health, but signs are that perturbation of this equilibrium beyond the limits of resilience can propel the system into an alternative stable state, a pre-disease state, more susceptible to the development of chronic diseases.
View Article and Find Full Text PDFHorizontal gene transfer can provide bacteria with new functions that confer an important competitive advantage, and is therefore likely to affect the dynamics of bacterial ecosystems. Two studies by Wolfe et al. and Bonham et al.
View Article and Find Full Text PDFThe first Lactobacillus delbrueckii ssp. bulgaricus genome sequence revealed the presence of a very large inverted repeat (IR), a DNA sequence arrangement which thus far seemed inconceivable in a non-manipulated circular bacterial chromosome, at the replication terminus. This intriguing observation prompted us to investigate if similar IRs could be found in other bacteria.
View Article and Find Full Text PDFThe human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment.
View Article and Find Full Text PDFScope: Inflammatory bowel disease (IBD) constitutes a growing public health concern in western countries. Bacteria with anti-inflammatory properties are lacking in the dysbiosis accompanying IBD. Selected strains of probiotic bacteria with anti-inflammatory properties accordingly alleviate symptoms and enhance treatment of ulcerative colitis in clinical trials.
View Article and Find Full Text PDF"Candidatus Arthromitus" sp. strain SFB-mouse-NL (SFB, segmented filamentous bacteria) is a commensal bacterium necessary for inducing the postnatal maturation of homeostatic innate and adaptive immune responses in the mouse gut. Here, we report the genome sequence of this bacterium, which sets it apart from earlier sequenced mouse SFB isolates.
View Article and Find Full Text PDFLactobacillus delbrueckii subsp. lactis CNRZ327 is a dairy bacterium with anti-inflammatory properties both in vitro and in vivo. Here, we report the genome sequence of this bacterium, which appears to contain no less than 215 insertion sequence (IS) elements, an exceptionally high number regarding the small genome size of the strain.
View Article and Find Full Text PDFBackground: Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus are lactic acid producing bacteria that are largely used in dairy industries, notably in cheese-making and yogurt production.
View Article and Find Full Text PDFSeveral probiotic bacteria have been proposed for treatment or prevention of inflammatory bowel diseases (IBD), showing a protective effect in animal models of experimental colitis and for some of them also in human clinical trials. While most of these probiotic bacteria are isolated from the digestive tract, we recently reported that a Lactobacillus strain isolated from cheese, L. delbrueckii subsp.
View Article and Find Full Text PDFComplex microbial ecosystems are increasingly studied through the use of metagenomics approaches. Overwhelming amounts of DNA sequence data are generated to describe the ecosystems, and allow to search for correlations between gene occurrence and clinical (e.g.
View Article and Find Full Text PDFBackground: We present the BioNLP 2011 Shared Task Bacteria Track, the first Information Extraction challenge entirely dedicated to bacteria. It includes three tasks that cover different levels of biological knowledge. The Bacteria Gene Renaming supporting task is aimed at extracting gene renaming and gene name synonymy in PubMed abstracts.
View Article and Find Full Text PDFThe study of health-beneficial effects that probiotic bacteria can exert on humans and animals is at its beginning. Pending scientific questions include the identification of molecular markers of the health-promoting activity of specific strains, which may be used to select novel probiotic strains and to gain understanding of the mechanisms underlying their effects. In that perspective, the role of bacterial proteins must be evaluated, placing proteomics-based approaches at the core of the field.
View Article and Find Full Text PDFBackground: S. aureus is one of the main pathogens involved in ruminant mastitis worldwide. The severity of staphylococcal infection is highly variable, ranging from subclinical to gangrenous mastitis.
View Article and Find Full Text PDFLactic acid bacteria (LAB) represent a heterogeneous group of microorganisms that are naturally present in many foods and possess a wide range of therapeutic properties. The aim of this paper is to present an overview of the current expanding knowledge of one of the mechanisms by which LAB and other probiotic microorganisms participate in the prevention and treatment of gastrointestinal inflammatory disease through their immune-modulating properties. A special emphasis will be placed on the critical role of the anti-inflammatory cytokine IL-10, and a brief overview of the uses of genetically engineered LAB that produce this important immune response mediator will also be discussed.
View Article and Find Full Text PDFBackground: The intestinal microbiota plays an important role in human health through the modulation of innate immune responses. While selected commensal bacteria are marketed in specific probiotic products to control these responses, relatively little is known about the immune modulation potential of dairy bacteria that have principally been selected for their fermentation properties. The modulation of innate immune responses may reduce chronic inflammation in inflammatory bowel diseases like ulcerative colitis.
View Article and Find Full Text PDFThe commensal bacterium Streptococcus salivarius is a prevalent species of the human oropharyngeal tract with an important role in oral ecology. Here, we report the complete 2.2-Mb genome sequence and annotation of strain JIM8777, which was recently isolated from the oral cavity of a healthy, dentate infant.
View Article and Find Full Text PDFOur knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous.
View Article and Find Full Text PDFWe characterized the insoluble proteome of Lactococcus lactis using 1D electrophoresis-LC-MS/MS and identified 313 proteins with at least two different peptides. The identified proteins include 89 proteins having a predicted signal peptide and 25 predicted to be membrane-located. In addition, 67 proteins had alkaline isoelectric point values.
View Article and Find Full Text PDFThe in silico prediction of bacterial surface exposed proteins is of growing interest for the rational development of vaccines and in the study of bacteria-host relationships, whether pathogenic or host beneficial. This interest is driven by the increase in the use of DNA sequencing as a major tool in the early characterization of pathogenic bacteria and, more recently, even of complex ecosystems at the host-environment interface in metagenomics approaches. Current protein localization protocols are not suited to this prediction task as they ignore the potential surface exposition of many membrane-associated proteins.
View Article and Find Full Text PDFLactic acid bacteria (LAB) gradually acidify their environment through the conversion of pyruvate to lactate, an essential process to regenerate NAD(+) used during glycolysis. A clear demonstration of acidification can be found in yogurt, the product of milk fermentation by the LAB Lactobacillus delbrueckii ssp. bulgaricus (L.
View Article and Find Full Text PDFBackground: While genes that are conserved between related bacterial species are usually thought to have evolved along with the species, phylogenetic trees reconstructed for individual genes may contradict this picture and indicate horizontal gene transfer. Individual trees are often not resolved with high confidence, however, and in that case alternative trees are generally not considered as contradicting the species tree, although not confirming it either. Here we conduct an in-depth analysis of 401 protein phylogenetic trees inferred with varying levels of confidence for three lactobacilli from the acidophilus complex.
View Article and Find Full Text PDFAppl Environ Microbiol
August 2006
Lactic acid bacteria (LAB) are generally sensitive to H2O2, a compound that they can paradoxically produce themselves, as is the case for Lactobacillus bulgaricus. Lactobacillus plantarum ATCC 14431 is one of the very few LAB strains able to degrade H2O2 through the action of a nonheme, manganese-dependent catalase (hereafter called MnKat). The MnKat gene was expressed in three catalase-deficient LAB species: L.
View Article and Find Full Text PDF