Publications by authors named "Maarten van Reeuwijk"

Article Synopsis
  • Predictions of airborne infection risk can be made using carbon dioxide measurements to estimate rebreathed air in environments like classrooms.
  • Environmental factors, especially how spaces are ventilated, lead to variability in these predictions, particularly in naturally ventilated areas common in UK classrooms.
  • Computational models reveal that the distribution of infectious breath in a classroom is influenced by both the distance from the source and ventilation patterns, but point CO measurements typically provide reasonably accurate exposure estimates, with uncertainties being less significant compared to other factors in airborne infection risk modeling.
View Article and Find Full Text PDF

Heat pumps (HPs) have emerged as a key technology for reducing energy use and greenhouse gas emissions. This study evaluates the potential switch to air-to-air HPs (AAHPs) in Toulouse, France, where conventional space heating is split between electric and gas sources. In this context, we find that AAHPs reduce heating energy consumption by 57% to 76%, with electric heating energy consumption decreasing by 6% to 47%, resulting in virtually no local heating-related CO emissions.

View Article and Find Full Text PDF

High-density low-cost air quality sensor networks are a promising technology to monitor air quality at high temporal and spatial resolution. However the collected data is high-dimensional and it is not always clear how to best leverage this information, particularly given the lower data quality coming from the sensors. Here we report on the use of robust Principal Component Analysis (RPCA) using nitrogen dioxide data obtained from a recently deployed dense network of 225 air pollution monitoring nodes based on low-cost sensors in the Borough of Camden in London.

View Article and Find Full Text PDF

Effects of hemodynamic shear stress on endothelial cells have been extensively investigated using the "swirling well" method, in which cells are cultured in dishes or multiwell plates placed on an orbital shaker. A wave rotates around the well, producing complex patterns of shear. The method allows chronic exposure to flow with high throughput at low cost but has two disadvantages: a number of shear stress characteristics change in a broadly similar way from the center to the edge of the well, and cells at one location in the well may release mediators into the medium that affect the behavior of cells at other locations, exposed to different shears.

View Article and Find Full Text PDF

Microbes play a primary role in aquatic ecosystems and biogeochemical cycles. Spatial patchiness is a critical factor underlying these activities, influencing biological productivity, nutrient cycling and dynamics across trophic levels. Incorporating spatial dynamics into microbial models is a long-standing challenge, particularly where small-scale turbulence is involved.

View Article and Find Full Text PDF

Abstract: Pollutant dispersion by a tall-building cluster within a low-rise neighbourhood of Beijing is investigated using both full-scale Large-Eddy Simulation and water flume experiments at 1:2400 model-to-full scale with Particle Image Velocimetry and Planar Laser-Induced Fluorescence. The Large-Eddy Simulation and flume results of this realistic test case agree remarkably well despite differences in the inflow conditions and scale. Tall buildings have strong influence on the local flow and the development of the rooftop shear layer which dominates vertical momentum and scalar fluxes.

View Article and Find Full Text PDF

The climate emergency and population growth threaten urban water security in cities worldwide. Growth, urbanisation, and changes to way of life have increased housing demand, requiring cities such as London to increase their housing stock by more than 15% over the next 10 years. These new urban developments will increase water demand, urban flood risk, and river water pollution levels; therefore, an integrated systems-based approach to development and water management is needed.

View Article and Find Full Text PDF

Accurate instantaneous vehicle emissions models are vital for evaluating the impacts of road transport on air pollution at high temporal and spatial resolution. In this study, we apply machine learning techniques to a dataset of 70 diesel vehicles tested in real-world driving conditions to: (i) cluster vehicles with similar emissions performance, and (ii) model instantaneous emissions. The application of dynamic time warping and clustering analysis by NO emissions resulted in 17 clusters capturing 88% of trips in the dataset.

View Article and Find Full Text PDF

We investigate the effect of buoyancy on the small-scale aspects of turbulent entrainment by performing direct numerical simulation of a gravity current and a wall jet. In both flows, we detect the turbulent/nonturbulent interface separating turbulent from irrotational ambient flow regions using a range of enstrophy iso-levels spanning many orders of magnitude. Conform to expectation, the relative enstrophy isosurface velocity in the viscous superlayer scales with the Kolmogorov velocity for both flow cases.

View Article and Find Full Text PDF

Transport of macromolecules across vascular endothelium and its modification by fluid mechanical forces are important for normal tissue function and in the development of atherosclerosis. However, the routes by which macromolecules cross endothelium, the hemodynamic stresses that maintain endothelial physiology or trigger disease, and the dependence of transendothelial transport on hemodynamic stresses are controversial. We visualized pathways for macromolecule transport and determined the effect on these pathways of different types of flow.

View Article and Find Full Text PDF

We demonstrate that diffusiophoretic, thermophoretic, and chemotactic phenomena in turbulence lead to clustering of particles on multifractal sets that can be described using one single framework, valid when the particle size is much smaller than the smallest length scale of turbulence l_{0}. To quantify the clustering, we derive positive pair correlations and fractal dimensions that hold for scales smaller than l_{0}. For scales larger than l_{0} the pair-correlation function is predicted to show a stretched exponential decay towards 1.

View Article and Find Full Text PDF

The validity of three mathematical models describing variable-density groundwater flow is systematically evaluated: (i) a model which invokes the Oberbeck-Boussinesq approximation (OB approximation), (ii) a model of intermediate complexity (NOB1) and (iii) a model which solves the full set of equations (NOB2). The NOB1 and NOB2 descriptions have been added to the HydroGeoSphere (HGS) model, which originally contained an implementation of the OB description. We define the Boussinesq parameter ερ=βω Δω where βω is the solutal expansivity and Δω is the characteristic difference in solute mass fraction.

View Article and Find Full Text PDF

The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1.

View Article and Find Full Text PDF

The aim of this paper is to contribute to the understanding of and to model the processes controlling the amplitude of the wind of Rayleigh-Bénard convection. We analyze results from direct simulation of an L/H=4 aspect-ratio domain with periodic sidewalls at Ra=(10(5), 10(6), 10(7), 10(8)) and at Pr=1 by decomposing independent realizations into wind and fluctuations. It is shown that, deep inside the thermal boundary layer, horizontal heat fluxes exceed the average vertical heat flux by a factor of 3 due to the interaction between the wind and the mean temperature field.

View Article and Find Full Text PDF

A combined experimental and numerical study of the boundary layer in a 4:1 aspect-ratio Rayleigh-Bénard cell over a four-decade range of Rayleigh numbers has been undertaken aimed at gaining a better insight into the character of the boundary layers. The experiments involved the simultaneous laser Doppler anemometry measurements of fluid velocity at two locations, i.e.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionesmt6uctb68b8dlorpbp1v3cor4qu3fn): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once