Publications by authors named "Maarten van Es"

Innate immunity is critical in the early containment of influenza A virus (IAV) infection and surfactant protein D (SP-D) plays a crucial role in innate defense against IAV in the lungs. Multivalent lectin-mediated interactions of SP-D with IAVs result in viral aggregation, reduced epithelial infection, and enhanced IAV clearance by phagocytic cells. Previous studies showed that porcine SP-D (pSP-D) exhibits distinct antiviral activity against IAV as compared to human SP-D (hSP-D), mainly due to key residues in the lectin domain of pSP-D that contribute to its profound neutralizing activity.

View Article and Find Full Text PDF

Nondestructive subsurface nanoimaging of buried nanostructures is considered to be extremely challenging and is essential for the reliable manufacturing of nanotechnology products such as three-dimensional (3D) transistors, 3D NAND memory, and future quantum electronics. In scanning probe microscopy (SPM), a microcantilever with a sharp tip can measure the properties of a surface with nanometer resolution. SPM combined with ultrasound excitation, known as ultrasound SPM, has shown the capability to image buried nanoscale features.

View Article and Find Full Text PDF

We have developed a high speed, miniature scanning probe microscope (MSPM) integrated with a Positioning Unit (PU) for accurately positioning the MSPM on a large substrate. This combination enables simultaneous, parallel operation of many units on a large sample for high throughput measurements. The size of the MSPM is 19 × 45 × 70 mm(3).

View Article and Find Full Text PDF

Premise Of The Study: Epiphyllous bryophytes are a highly characteristic feature of many humid tropical forest ecosystems. In contrast to the extensive fossil record for the leaves of their host plants, the record is virtually nonexistent for the epiphylls themselves, despite a fossil record for mosses that begins in the Middle Carboniferous Period, 330 million years ago.

Methods: Epifluorescence optical microscopy, scanning electron microscopy, and atomic force microscopy were employed to investigate an intimate association between a newly discovered epiphyllous moss and a Lauraceae plant host from the middle Cretaceous.

View Article and Find Full Text PDF

The mechanical properties of cells are reported to be regulated by a range of factors including interactions with the extracellular environment and other cells, differentiation status, the onset of pathological states, as well as the intracellular factors, for example, the cytoskeleton. The cell cycle is considered to be a well-ordered sequence of biochemical events. A number of processes reported to occur during its progression are inherently mechanical and, as such, require mechanical regulation.

View Article and Find Full Text PDF

Muscle contractions begin in early embryonic life, generating forces that regulate the correct formation of the skeleton. In this paper we test the hypothesis that the biophysical stimulation generated by muscle forces may be a causative factor for the changes in shape of the knee joint as it grows. We do this by predicting the spatial and temporal patterns of biophysical stimuli, where cell proliferation and rudiment shape changes occur within the emerging tissues of the joint over time.

View Article and Find Full Text PDF

An aneurysm of the aorta is a common pathology characterized by segmental weakening of the artery. Although it is generally accepted that the vessel-wall weakening is caused by an impaired collagen metabolism, a clear association has been demonstrated only for rare syndromes such as the vascular type Ehlers-Danlos syndrome. Here we show that vessel-wall failure in growing aneurysms of patients who have aortic abdominal aneurysm (AAA) or Marfan syndrome is not related to a collagen defect at the molecular level.

View Article and Find Full Text PDF

A new method for extracting quantitative data from amplitude modulation dynamic force-distance measurements is developed. The method is based on the harmonic oscillator model of vibrating atomic force microscope cantilevers, and is capable of extracting both the conservative and dissipative parts of the tip-sample interaction from a measurement of oscillation amplitude and phase as a function of distance. Numerical simulations are used to demonstrate the validity of the method.

View Article and Find Full Text PDF

Fluorescent correlation spectroscopy (FCS) was used to measure binding affinities of ligands to ligates that are expressed by phage-display technology. Using this method we have quantified the binding of the 14-3-3 signaling protein to artificial peptide ligand. As a ligand we used the R18 artificial peptide expressed as a fusion in the cpIII coat protein that is present in 3 to 5 copies in an M13 phage.

View Article and Find Full Text PDF